Hartree-Fock-Slater method for materiasls science (Berlin; Heidelberg, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHartree-Fock-Slater method for materiasls science. The DV-Xα method for design and characterization of materials / ed. by Adachi H., Mukoyama T., Kawai J. - Berlin; Heidelberg: Springer, 2006. - xvi, 240 p. - (Springer series in materials science; 84). - ISBN 3-540-24508-1; ISSN 0933-033X
 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Part I Fundamental

1 DV-Xα Method and Molecular Structure
        H. Adachi .............................................. 3

1.1. Molecular Orbital Theory .................................. 3
1.2. Discrete Variational (DV) Xα Molecular
     Orbital Method ............................................ 5
1.3. Molecular Orbital Calculation of H2 ...................... 10
1.4. Covalency and Ionicity ................................... 13
1.5. DV-Xα Molecular Orbital Calculation for CO Molecule ...... 15
References .................................................... 20

Part II Materials Science

2 Alloy Design Based on the DV-Xa Cluster Method
        M. Morinaga, Y. Murata, H. Yukawa ..................... 23

2.1. Introduction ............................................. 23
2.2. DV-Xα Molecular Orbital Method ........................... 24
2.3. Alloying Parameters ...................................... 25
     2.3.1. d-Orbital Energy Level, Md ........................ 25
     2.3.2. Bond Order, Bo .................................... 26
     2.3.3. Average Parameter Values for Typical Alloys ....... 27
2.4. Estimation of Alloy Properties Using Alloying
     Parameters ............................................... 29
     2.4.1. Nickel Alloys ..................................... 29
            New PHACOMP Method ................................ 30
            Alloying Vector ................................... 30
            Target Region for Alloy Design .................... 32
            Alloy Modification Using the Bo-Md Diagram ........ 32
     2.4.2. High-Cr Ferritic Steels ........................... 33
            Alloying Vector ................................... 33
            δ Ferrite Formation ............................... 34
            Evolution of Ferritic Steels ...................... 34
2.5. Design of Structural Alloys .............................. 36
     2.5.1. Nickel-Based Single-Crystal Superalloys ........... 36
     2.5.2. High-Cr Ferritic Steels ........................... 36
2.6. Crystal Structure Maps for Intermetallic Compounds ....... 37
2.7. Hydrogen Storage Alloys .................................. 37
     2.7.1. Metal-hydrogen Interaction ........................ 38
     2.7.2. Roles of Hydride-Forming and Non-Forming
            Elements .......................................... 40
     2.7.3. Criteria for Alloy Design ......................... 41
            Alloy Cluster Suitable for Hydrogen Storage ....... 41
            Alloy Compositions ................................ 42
            Mg-Based Alloys ................................... 43
2.8. Proton-Conducting Perovskite-type Oxides ................. 44
2.9. Conclusion ............................................... 46
References .................................................... 46

3. Chemical Bonding Around Lattice Imperfections
   in 3d-Transit ion Metal Compounds
      M. Mizuno ............................................... 49

3.1. Introduction ............................................. 49
3.2. Computational Method ..................................... 50
3.3. Effect of Solute Atoms on the Chemical Bonding of
     Fe3C ..................................................... 51
     3.3.1. Crystal Structure and Cluster Models for
            Fe3C with Solute Atoms ............................ 51
     3.3.2. Pure Fe3C ......................................... 54
     3.3.3. Fe3C with Solute Atoms ............................ 55
     3.3.4. Effect of Solute Atoms on Fe3C .................... 57
     3.3.5. Effect of Solute Atoms in Other Transition Metal
            Carbides .......................................... 60
3.4. Chemical Bonding at the Fe/TiX (X = C, N, or O)
     Interfaces ............................................... 65
     3.4.1. Model Clusters for the Fe/TiX Interfaces .......... 66
     3.4.2. 1 Bulk TiC, TiN, and TiO .......................... 68
     3.4.3. Preferred Position of Fe Atoms at the Fe/TiC
            Interface ......................................... 70
     3.4.4. Analysis of the Chemical Bonding at
            the Fe/TiC, Fe/TiN, and Fe/TiO Interfaces ......... 72
     3.4.5. Other Interfaces .................................. 76
3.5. Conclusions .............................................. 81
References .................................................... 82

4. Ceramics
     T. Kamiya. N. Ohashi, J. Tanaka .......................... 85

4.1. General Introduction ..................................... 85
4.2. Characterization of Ceramics with the Assistance
     of DV-Xα Calculations .................................... 87
     4.2.1. Assignments for Electron Spectroscopy ............. 88
            Introduction ...................................... 88
            Calculation ....................................... 91
            Results ........................................... 92
            Remarks ........................................... 92
     4.2.2. Prediction of Atomic Arrangements ................. 93
            Introduction ...................................... 93
     4.2.3. Theory and Calculation ............................ 94
4.3. Results .................................................. 96
     Remarks .................................................. 97
     4.3.1. Assignments for the ESR Spectra Using
            Electron Density Calculations by DV-Xα ............ 98
     Introduction ............................................. 98
     Theory and Calculation ................................... 98
     4.3.2. Results .......................................... 100
4.4. Property and Structure Predictions for Ceramics
     Using DV-Xα ............................................. 102
     4.4.1. Calculation of Structural and Dielectric
            Properties of Inorganic Crystals Using DV-Xα
            Basis Functions .................................. 103
            Introduction ..................................... 103
            Calculation ...................................... 104
            Results .......................................... 105
     4.4.2. Tight-binding Approach Using the DV-Xα Method .... 106
            Introduction ..................................... 106
            Calculation ...................................... 107
     4.4.3. Results .......................................... 108
     4.4.4. Indirect Prediction of the Piezoelectric
            Property Change of Pb(Zr, Ti)CO3 Induced
            by the Addition of Impurities .................... 112
            Introduction ..................................... 112
            Calculation ...................................... 113
            Results .......................................... 114
4.5. Remarks ................................................. 118
     References .............................................. 118

5 Magnetic Properties
     K. Fukushima ............................................ 121

5.1. Introduction ............................................ 121
5.2. Computational Method and Models ......................... 123
5.3. Results and Discussion .................................. 125
5.4. Conclusions ............................................. 127
References ................................................... 127

6. Optical Materials
      K. Ogasawara, H. Adachi ................................ 129

6.1. Introduction ............................................ 129
     6.1.1. Optical Materials Based on Transition-Metal
            Ions ............................................. 129
     6.1.2. Ligand-Field Theory .............................. 131
     6.1.3. First-principle Calculation of Multiplets ........ 132
     6.1.4. DV-ME Method ..................................... 133
6.2. DV-ME Method ............................................ 133
     6.2.1. Configuration Interaction ........................ 133
     6.2.2. CDC Approach ..................................... 135
     6.2.3. Correlation Correction ........................... 136
     6.2.4. Transition Probability ........................... 137
6.3. Calculation of the Absorption Spectrum of Ruby .......... 138
     6.3.1. Model Cluster .................................... 138
     6.3.2. One-Electron Energy Level ........................ 138
     6.3.3. Multiplet Energy Level ........................... 138
     6.3.4. Absorption Spectra ............................... 139
6.4. Calculation of the Absorption Spectrum of Co2+:ZnS ...... 141
     6.4.1. Model Cluster .................................... 141
     6.4.2. One-Electron Energy Level ........................ 141
     6.4.3. Multiplet Energy Level ........................... 141
     6.4.4. Absorption Spectrum .............................. 142
6.5. Summary ................................................. 143
     References .............................................. 144

7. Heavy Elements
      T. Ishii, M. Yamashita, R. Sekine, T. Enoki ............ 147

7.1. Introduction ............................................ 147
7.2. Method of Calculation ................................... 148
7.3. Results and Discussion .................................. 150
References ................................................... 159

Part III Spectroscopy

8 Radiative Transitions
     T. Mukoyama ............................................. 163

8.1. Introduction ............................................ 163
8.2. Transition Probability .................................. 165
8.3. Dipole Matrix Element ................................... 168
8.4. Molecular X-Ray Emission ................................ 171
8.5. Test for X-Ray Emission Rates ........................... 173
     8.5.1. Validity of the DV Integration Method ............ 173
     8.5.2. Electronic Relaxation Effect ..................... 174
     8.5.3. Contributions from Interatomic Transitions ....... 177
8.6. Chemical Effect of the Kβ/Kα Ratios for 3d Elements .... 178
8.7. Relation between Kβ/Kα Ratios and the Number of 3d
     Electrons ............................................... 182
8.8. Summary ................................................. 186
References ................................................... 187

9. Response to the Creation of a Core Hole
   in Transition-Metal Compounds
      J. Kawai ............................................... 189

9.1. Core-hole Spectroscopic Techniques ...................... 189
9.2. Ionic Chemical Bond as a Perturbation of Atomic
     Structure ............................................... 194
9.3. Covalent Bond Formation Due to a Core Hole .............. 196
9.4. Charge Transfer Due to a Core Hole ...................... 197
9.5. Calculation Details ..................................... 198
     9.5.1. Cluster Size ..................................... 198
     9.5.2. Difference Between ls↓-1 and ls↑-1
            Hole States ...................................... 199
     9.5.3. Difference Between Is-1 and 2p-1
            Hole States ...................................... 200
     9.5.4. Effect of Bond Length Difference ................. 200
9.6. Charge-Transfer Effect .................................. 201
9.7. Concluding Remarks ...................................... 204
References ................................................... 205

10.Determining Electronic Structure from Auger Spectra
   in the Cluster Approximation
       L. Kover .............................................. 209

10.1.Introduction ............................................ 209
10.2.Effects of the Atomic Environment of Auger Spectra
     Excited from Solids ..................................... 210
10.3.X-ray Excited Auger Spectroscopy for Studying
     Chemical and Solid State Effects on Auger Spectra ....... 211
10.4.Local Charges in Binary Alloys .......................... 211
     10.4.1.Experimental ..................................... 213
     10.4.2.Charge Transfer in CuPd Alloys ................... 213
     10.4.3.Charge Transfer in A13Ni and AlNi3 Alloys ........ 214
10.5.Generalized Electrostatic Model for Interpreting
     Auger Parameter Shifts and Final State
     Relaxation/Polarization ................................. 217
10.6.Interpretation of K-Auger Satellite Structures
     in 3α Metals and in Fluorides, Using the MO
     Cluster Approach ........................................ 219
     10.6.1.F KLL Auger Spectra of Metallic Cu and Ni:
            Calculation of the Satellite Main Line Energy
            Separation Using the DV-Xa Cluster Molecular
            Orbital Model .................................... 219
     10.6.2.F KLL Spectra in Fluorides: Determination of
            the Resonance Energy and Multiplet Structure
            Using DV-Xα Cluster Molecular Orbital
            Calculations ..................................... 222
10.7.Information on Local Electronic Structure and
     Correlation from Core-valence Auger Lineshapes .......... 226
     10.7.1.Local Electronic Structures in Phosphorus
            Oxyanions ........................................ 227
     10.7.2.Core-valence K-Auger Spectra of Metallic Al ...... 227
     10.7.3.Local Electronic Structure in Al-Ni Alloys ....... 230
10.8.Summary ................................................. 234

References ................................................... 234
Index ........................................................ 237


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:19:36 2019. Размер: 17,810 bytes.
Посещение N 2139 c 10.03.2009