Yu P.Y. Fundamentals of semiconductors: physics and materials properties (Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаYu P.Y. Fundamentals of semiconductors: physics and materials properties / P.Y.Yu, M.Cardona. - 4th ed. - Heidelberg: Springer, 2010. - xx, 775 p.: ill. - (Graduate texts in physics). - Ref.: p.719-753. - Sub. ind.: p.755-775. - ISBN 978-3-642-00709-5; ISSN 1868-4513
 

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  A Survey of Semiconductors .............................. 2
        1.1.1  Elemental Semiconductors ......................... 2
        1.1.2  Binary Compounds ................................. 2
        1.1.3  Oxides ........................................... 3
        1.1.4  Layered Semiconductors ........................... 3
        1.1.5  Organic Semiconductors ........................... 4
        1.1.6  Magnetic Semiconductors .......................... 4
        1.1.7  Other Miscellaneous Semiconductors ............... 4
   1.2  Growth Techniques ....................................... 5
        1.2.1  Czochralski Method ............................... 5
        1.2.2  Bridgman Method .................................. 6
        1.2.3  Chemical Vapor Deposition ........................ 7
        1.2.4  Molecular Beam Epitaxy ........................... 8
        1.2.5  Fabrication of Self-Organized Quantum Dots
               by the Stranski-Krastanow Growth Method ......... 11
        1.2.6  Liquid Phase Epitaxy ............................ 13
   Summary ..................................................... 14
   Periodic Table of "Semiconductor-Forming" Elements .......... 15

2  Electronic Band Structures .................................. 17
   2.1  Quantum Mechanics ...................................... 18
   2.2  Translational Symmetry and Brillouin Zones ............. 20
   2.3  A Pedestrian's Guide to Group Theory ................... 25
        2.3.1  Definitions and Notations ....................... 25
        2.3.2  Symmetry Operations of the Diamond and Zinc-
               Blende Structures ............................... 30
        2.3.3  Representations and Character Tables ............ 32
        2.3.4  Some Applications of Character Tables ........... 40
   2.4  Empty Lattice or Nearly Free Electron Energy Bands ..... 48
        2.4.1  Nearly Free Electron Band Structure in a Zinc-
               Blende Crystal .................................. 48
        2.4.2  Nearly Free Electron Energy Bands in Diamond
               Crystals ........................................ 52
   2.5  Band Structure Calculations by Pseudopotential
        Methods ................................................ 58
        2.5.1  Pseudopotential Form Factors in Zinc-Blende-
               and Diamond-Type Semiconductors ................. 61
        2.5.2  Empirical and Self-Consistent Pseudopotential
               Methods ......................................... 66
   2.6  The hp Method of Band-Structure Calculations ........... 68
        2.6.1  Effective Mass of a Nondegenerate Band Using
               the hp Method ................................... 69
        2.6.2  Band Dispersion near a Degenerate Extremum:
               Top Valence Bands in Diamond- and Zinc-Blende-
               Type Semiconductors ............................. 71
   2.7  Tight-Binding or LCAO Approach to the Band Structure
        of Semiconductors ...................................... 83
        2.7.1  Molecular Orbitals and Overlap Parameters ....... 83
        2.7.2  Band Structure of Group-IV Elements by the
               Tight-Binding Method ............................ 87
        2.7.3  Overlap Parameters and Nearest-Neighbor
               Distances ....................................... 94
   Problems .................................................... 96
   Summary .................................................... 105

3  Vibrational Properties of Semiconductors, and Electron-
   Phonon Interactions ........................................ 107
   3.1  Phonon Dispersion Curves of Semiconductors ............ 110
   3.2  Models for Calculating Phonon Dispersion Curves
        of Semiconductors ..................................... 114
        3.2.1  Force Constant Models .......................... 114
        3.2.2  Shell Model .................................... 114
        3.2.3  Bond Models .................................... 115
        3.2.4  Bond Charge Models ............................. 117
   3.3  Electron-Phonon Interactions .......................... 121
        3.3.1  Strain Tensor and Deformation Potentials ....... 122
        3.3.2  Electron-Acoustic-Phonon Interaction
               at Degenerate Bands ............................ 127
        3.3.3  Piezoelectric Electron-Acoustic-Phonon
               Interaction .................................... 130
        3.3.4  Electron-Optical-Phonon Deformation Potential
               Interactions ................................... 131
        3.3.5  Frohlich Interaction ........................... 133
        3.3.6  Interaction Between Electrons and Large-Wave
               vector Phonons: Intervalley Electron-Phonon
               Interaction .................................... 135
   Problems ................................................... 137
   Summary .................................................... 158

4  Electronic Properties of Defects ........................... 159
   4.1  Classification of Defects ............................. 160
   4.2  Shallow or Hydrogenic Impurities ...................... 161
        4.2.1  Effective Mass Approximation ................... 162
        4.2.2  Hydrogenic or Shallow Donors ................... 166
        4.2.3  Donors Associated with Anisotropic Conduction
               Bands .......................................... 171
        4.2.4  Acceptor Levels in Diamond- and Zinc-Blende-
               Type Semiconductors ............................ 174
   4.3  Deep Centers .......................................... 180
        4.3.1  Green's Function Method for Calculating
               Defect Energy Levels ........................... 183
        4.3.2  An Application of the Green's Function Method:
               Linear Combination of Atomic Orbitals .......... 188
        4.3.3  Another Application of the Green's Function
               Method: Nitrogen in GaP and GaAsP Alloys ....... 192
        4.3.4  Final Note on Deep Centers ..................... 197
   Problems ................................................... 198
   Summary .................................................... 202

5  Electrical Transport ....................................... 203
   5.1  Quasi-Classical Approach .............................. 203
   5.2  Carrier Mobility for a Nondegenerate Electron Gas ..... 206
        5.2.1  Relaxation Time Approximation .................. 206
        5.2.2  Nondegenerate Electron Gas in a Parabolic
               Band ........................................... 207
        5.2.3  Dependence of Scattering and Relaxation Times
               on Electron Energy ............................. 208
        5.2.4  Momentum Relaxation Times ...................... 209
        5.2.5  Temperature Dependence of Mobilities ........... 220
   5.3  Modulation Doping ..................................... 223
   5.4  High-Field Transport and Hot Carrier Effects .......... 225
        5.4.1  Velocity Saturation ............................ 227
        5.4.2  Negative Differential Resistance ............... 228
        5.4.3  Gunn Effect .................................... 230
   5.5  Magneto-Transport and the Hall Effect ................. 232
        5.5.1  Magneto-Conductivity Tensor .................... 232
        5.5.2  Hall Effect .................................... 234
        5.5.3  Hall Coefficient for Thin Film Samples (van
               der Pauw Method) ............................... 235
        5.5.4  Hall Effect for a Distribution of Electron
               Energies ....................................... 236
        Problems .............................................. 237
        Summary ............................................... 241

6  Optical Properties I ....................................... 243
   6.1  Macroscopic Electrodynamics ........................... 244
        6.1.1  Digression: Units for the Frequency of
               Electromagnetic Waves .......................... 247
        6.1.2  Experimental Determination of Optical
               Functions ...................................... 247
        6.1.3  Kramers-Kronig Relations ....................... 250
   6.2  The Dielectric Function ............................... 253
        6.2.1  Experimental Results ........................... 253
        6.2.2  Microscopic Theory of the Dielectric
               Function ....................................... 254
        6.2.3  Joint Density of States and Van Hove
               Singularities .................................. 261
        6.2.4  Van Hove Singularities in εi ................... 262
        6.2.5  Direct Absorption Edges ........................ 268
        6.2.6  Indirect Absorption Edges ...................... 269
        6.2.7  "Forbidden" Direct Absorption Edges ............ 273
   6.3  Excitons .............................................. 276
        6.3.1  Exciton Effect at M0 Critical Points ........... 279
        6.3.2  Absorption Spectra of Excitons ................. 282
        6.3.3  Exciton Effect at Mx Critical Points or
               Hyperbolic Excitons ............................ 288
        6.3.4  Exciton Effect at M3 Critical Points ........... 291
   6.4  Phonon-Polaritons and Lattice Absorption .............. 292
        6.4.1  Phonon-Polaritons .............................. 295
        6.4.2  Lattice Absorption and Reflection .............. 298
        6.4.3  Multiphonon Lattice Absorption ................. 299
        6.4.4  Dynamic Effective Ionic Charges in
               Heteropolar Semiconductors ..................... 303
   6.5  Absorption Associated with Extrinsic Electrons ........ 305
        6.5.1  Free-Carrier Absorption in Doped
               Semiconductors ................................. 306
        6.5.2  Absorption by Carriers Bound to Shallow
               Donors and Acceptors ........................... 311
   6.6  Modulation Spectroscopy ............................... 315
        6.6.1  Frequency Modulated Reflectance and
               Thermoreflectance .............................. 319
        6.6.2  Piezoreflectance ............................... 321
        6.6.3  Electroreflectance (Franz-Keldysh Effect) ...... 322
        6.6.4  Photoreflectance ............................... 329
        6.6.5  Reflectance Difference Spectroscopy ............ 332
   6.7  Addendum (Third Edition): Dielectric Function ......... 333
        Problems .............................................. 334
        Summary ............................................... 343

7  Optical Properties II ...................................... 345
   7.1  Emission Spectroscopies ............................... 345
        7.1.1  Band-to-Band Transitions ....................... 351
        7.1.2  Free-to-Bound Transitions ...................... 354
        7.1.3  Donor-Acceptor Pair Transitions ................ 356
        7.1.4  Excitons and Bound Excitons .................... 362
        7.1.5  Luminescence Excitation Spectroscopy ........... 369
   7.2  Light Scattering Spectroscopies ....................... 375
        7.2.1  Macroscopic Theory of Inelastic Light
               Scattering by Phonons .......................... 375
        7.2.2  Raman Tensor and Selection Rules ............... 378
        7.2.3  Experimental Determination of Raman Spectra .... 385
        7.2.4  Microscopic Theory of Raman Scattering ......... 394
        7.2.5  A Detour into the World of Feynman Diagrams .... 395
        7.2.6  Brillouin Scattering ........................... 398
        7.2.7  Experimental Determination of Brillouin
               Spectra ........................................ 400
        7.2.8  Resonant Raman and Brillouin Scattering ........ 401
        Problems .............................................. 422
        Summary ............................................... 426

8  Photoelectron Spectroscopy ................................. 4ll
   8.1  Photoemission ......................................... 431
        8.1.1  Angle-Integrated Photoelectron Spectra of the
               Valence Bands .................................. 440
        8.1.2  Angle-Resolved Photoelectron Spectra of the
               Valence Bands .................................. 443
        8.1.3  Core Levels .................................... 451
   8.2  Inverse Photoemission ................................. 456
   8.3  Surface Effects ....................................... 457
        8.3.1  Surface States and Surface Reconstruction ...... 457
        8.3.2  Surface Energy Bands ........................... 458
        8.3.3  Fermi Level Pinning and Space Charge Layers .... 460
   Problems ................................................... 465
   Summary .................................................... 468

9  Effect of Quantum Confinement on Electrons and Phonons in
   Semiconductors ............................................. 469
   9.1  Quantum Confinement and Density of States ............. 470
   9.2  Quantum Confinement of Electrons and Holes ............ 473
        9.2.1  Semiconductor Materials for Quantum Wells and
               Superlattices .................................. 474
        9.2.2  Classification of Multiple Quantum Wells
               and Superlattices .............................. 478
        9.2.3  Confinement of Energy Levels of Electrons and
               Holes .......................................... 479
        9.2.4  Some Experimental Results ...................... 489
   9.3  Phonons in Superlattices .............................. 494
        9.3.1  Phonons in Superlattices: Folded Acoustic and
               Confined Optic Modes ........................... 494
        9.3.2  Folded Acoustic Modes: Macroscopic Treatment ... 499
        9.3.3  Confined Optical Modes: Macroscopic
               Treatment ...................................... 500
        9.3.4  Electrostatic Effects in Polar Crystals:
               Interface Modes ................................ 502
   9.4  Raman Spectra of Phonons in Semiconductor
        Superlattices ......................................... 511
        9.4.1  Raman Scattering by Folded Acoustic Phonons .... 511
        9.4.2  Raman Scattering by Confined Optical Phonons ... 516
        9.4.3  Raman Scattering by Interface Modes ............ 518
        9.4.4  Macroscopic Models of Electron-LO Phonon
               (Frohlich) Interaction in Multiple Quantum
               Wells .......................................... 521
   9.5  Electrical Transport: Resonant Tunneling .............. 525
        9.5.1  Resonant Tunneling Through a Double-Barrier
               Quantum Well ................................... 526
        9.5.2  I-V Characteristics of Resonant Tunneling
               Devices ........................................ 529
   9.6  Quantum Hall Effects in Two-Dimensional Electron
        Gases ................................................. 533
        9.6.1  Landau Theory of Diamagnetism in a Three-
               Dimensional Free Electron Gas .................. 534
        9.6.2  Magneto-Conductivity of a Two-Dimensional
               Electron Gas: Filling Factor ................... 537
        9.6.3  The Experiment of von Klitzing, Pepper and
               Dorda .......................................... 538
        9.6.4  Explanation of the Hall Plateaus in the
               Integral Quantum Hall Effect ................... 541
   9.7  Concluding Remarks .................................... 545
   Problems ................................................... 546
   Summary .................................................... 551

Appendix A: Pioneers of Semiconductor Physics Remember ........ 553
     Ultra-Pure Germanium: From Applied to Basic Research
        or an Old Semiconductor Offering New Opportunities
        By Eugene E. Haller ................................... 555
     Two Pseudopotential Methods: Empirical and Ab Initio
        By Marvin L. Cohen .................................... 558
     The Early Stages of Band-Structures Physics and Its
        Struggles for a Place in the Sun By Conyers Herring ... 560
     Cyclotron Resonance and Structure of Conduction and
        Valence Band Edges in Silicon and Germanium By
        Charles Kittel ........................................ 563
     Optical Properties of Amorphous Semiconductors and
        Solar Cells By Jan Tauc ............................... 566
     Optical Spectroscopy of Shallow Impurity Centers By
        Elias Burstein ........................................ 569
     On the Prehistory of Angular Resolved Photoemission
        By Neville V. Smith ................................... 574
     The Discovery and Very Basics of the Quantum Hall
        Effect By Klaus von Klitzing .......................... 576
     The Birth of the Semiconductor Superlattice
        By Leo Esaki .......................................... 578

Appendix B: Solutions to Some of the Problems ................. 583

Appendix C: Recent Development ................................ 673

Appendix D: Recent Developments and References ................ 687

References .................................................... 755

Physical Parameters of Tetrahedral Semiconductors (Inside Front
Cover)

Table of Fundamental Physical Constants (Inside Back Cover)

Table of Units (Inside Back Cover)


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:32 2019. Размер: 21,727 bytes.
Посещение N 2174 c 19.10.2010