Advanced nanomaterials; 2 (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAdvanced nanomaterials. Vol.2 / ed. by K.E.Geckeler, H.Nishide. - Weinheim: Wiley-VCH, 2010. - xxiv, P.459-906: ill. - Incl. bibl. ref. - ISBN 978-3-527-31794-3
 

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors ......................................... XVII

                            Volume 2

14 Amphiphilic Poly(Oxyalkylene)-Amines Interacting with
   Layered Clays: Intercalation, Exfoliation, and New
   Applications ............................................... 459
   Jiang-Jen Lin, Ying-Nan Chan, and Wen-Hsin Chang
   14.1  Introduction ......................................... 459
   14.2  Chemical Structures of Clays and Organic-Salt
         Modifications ........................................ 460
         14.2.1  Natural Clays and Synthetic Layered-Double-
                 Hydroxide (LDH) .............................. 460
         14.2.2  Low-Molecular-Weight Intercalating Agents
                 and X-Ray Diffraction d- Spacing ............. 461
   14.3  Poly(Oxyalkylene)-Polyamine Salts as Intercalating
         Agents, and Their Reaction Profiles .................. 462
         14.3.1  Poly(Oxyalkylene)-Polyamine Salts as
                 Intercalating Agents ......................... 462
         14.3.2  Critical Conformational Change in
                 Confinement During the Intercalating
                 Profile ...................................... 464
         14.3.3  Correlation between MMT d-Spacing and
                 Intercalated Organics ........................ 466
   14.4  Amphiphilic Copolymers as Intercalating Agents ....... 466
         14.4.1  Various Structures of the Amphiphilic
                 Copolymers ................................... 466
         14.4.2  Colloidal Properties ......................... 469
   14.5  New Intercalation Mechanism Other than the Ionic-
         Exchange Reaction .................................... 469
         14.5.1  Amidoacid and Carboxylic Acid Chelating ...... 469
         14.5.2  Intercalation Involving Intermolecular
                 Hydrogen Bonding ............................. 470
   14.6  Self-Assembling Properties of Organoclays ............ 471
   14.7  Exfoliation Mechanism and the Isolation of Random
         Silicate Platelets ................................... 472
         14.7.1  Thermodynamically Favored Exfoliation of
                 Na+-MMT by the PP-POP Copolymers ............. 472
         14.7.2  Zigzag Mechanism for Exfoliating Na+-MMT ..... 473
   14.8  Isolation of the Randomized Silicate Platelets in
         Water ................................................ 473
   14.9  Emerging Applications in Biomedical Research ......... 475
   14.10 Conclusions .......................................... 477
   References ................................................. 478

15 Mesoporous Alumina: Synthesis, Characterization, and
   Catalysis .................................................. 481
   Tsunetake Seki and Makoto Onaka
   15.1  I ntroduction ........................................ 481
   15.2  Synthesis of Mesoporous Alumina ...................... 482
         15.2.1  Experimental Techniques ...................... 482
                 15.2.1.1  Synthesis .......................... 482
                 15.2.1.2  Characterization ................... 484
         15.2.2  Examples of Synthesis ........................ 485
                 15.2.2.1  Neutral Surfactant Templating ...... 486
                 15.2.2.2  Anionic Surfactant Templating ...... 492
                 15.2.2.3  Cationic Surfactant Templating ..... 495
                 15.2.2.4  Nonsurfactant Templating ........... 498
   15.3  Mesoporous Alumina in Heterogeneous Catalysis ........ 500
         15.3.1  Base-Catalyzed Reactions ..................... 508
         15.3.2  Epoxidation .................................. 509
         15.3.3  Hydrodechlorination .......................... 510
         15.3.4  Hydrodesulfurization ......................... 512
         15.3.5  Olefin Metathesis ............................ 513
         15.3.6  Oxidative Dehydrogenation .................... 517
         15.3.7  Oxidative Methanol Steam Reforming ........... 518
   15.4  Conclusions and Outlook .............................. 519
         References ........................................... 519

16 Nanoceramics for Medical Applications ...................... 523
   Besim Ben-Nissan and Andy H. Choi
   16.1  Introduction ......................................... 523
   16.2  Tissue Engineering and Regeneration .................. 527
         16.2.1  Scaffolds .................................... 527
         16.2.2  Liposomes .................................... 531
   16.3  Nanohydroxyapatite Powders for Medical
         Applications ......................................... 532
   16.4  Nanocoatings and Surface Modifications ............... 535
         16.4.1  Calcium Phosphate Coatings ................... 535
         16.4.2  Sol-Gel Nanohydroxyapatite and Nanocoated
                 Coralline Apatite ............................ 538
         16.4.3  Surface Modifications ........................ 540
   16.5  Simulated Body Fluids ................................ 541
   16.6  Nano- and Macrobioceramics for Drug Delivery and
         Radiotherapy ......................................... 546
         16.6.1  Nanobioceramics for Drug Delivery ............ 546
         16.6.2  Microbioceramics for Drug Delivery ........... 548
         16.6.3  Microbioceramics for Radiotherapy ............ 549
   16.7  Nanotoxicology and Nanodiagnostics ................... 551
   References ................................................. 552

17 Self-healing of Surface Cracks in Structural Ceramics ...... 555
   Wataru Nakao, Koji Takahashi, and Kotoji Ando
   17.1  Introduction ......................................... 555
   17.2  Fracture Manner of Ceramics .......................... 555
   17.3  History .............................................. 557
   17.4  Mechanism ............................................ 559
   17.5  Composition and Structure ............................ 562
         17.5.1  Composition .................................. 562
         17.5.2  SiC Figuration ............................... 563
         17.5.3  Matrix ....................................... 566
   17.6  Valid Conditions ..................................... 567
         17.6.1  Atmosphere ................................... 567
         17.6.2  Temperature .................................. 568
         17.6.3  Stress ....................................... 571
   17.7  Crack-healing Effect ................................. 573
         17.7.1  Crack-healing Effects on Fracture
                 Probability .................................. 573
         17.7.2  Fatigue Strength ............................. 575
         17.7.3  Crack-healing Effects on Machining
                 Efficiency ................................... 577
   17.8  New Structural Integrity Method ...................... 579
         17.8.1  Outline ...................................... 579
         17.8.2  Theory ....................................... 580
         17.8.3  Temperature Dependence of the Minimum
                 Fracture Stress Guaranteed ................... 582
   17.9  Advanced Self-crack Healing Ceramics ................. 585
         17.9.1  Multicomposite ............................... 585
         17.9.2  SiC Nanoparticle Composites .................. 587
   17.10 Availability to Structural Components of the High
         Temperature Gas Turbine .............................. 588
   References ................................................. 590

18 Ecological Toxicology of Engineered Carbon Nanoparticles ... 595
   Aaron P. Roberts and Ryan R. Otter
   18.1  Introduction ......................................... 595
   18.2  Fate and Exposure .................................... 596
         18.2.1  General ...................................... 596
         18.2.2  Stability in Aquatic Systems ................. 596
         18.2.3  Bioavailability and Uptake ................... 598
         18.2.4  Tissue Distribution .......................... 600
         18.2.5  Food Web ..................................... 600
         18.2.6  Effects on the Uptake of Other
                 Contaminants ................................. 602
   18.3  Effects .............................................. 602
         18.3.1  General ...................................... 602
         18.3.2  Oxidative Stress and Nanoparticles ........... 602
         18.3.3  Effects on Specific Tissues .................. 606
                 18.3.3.1  Brain .............................. 606
                 18.3.3.2  Gills .............................. 607
                 18.3.3.3  Liver .............................. 607
                 18.3.3.4  Gut ................................ 60S
         18.3.4  Developmental Effects ........................ 608
   18.4  Summary .............................................. 609
   References ................................................. 610

19 Carbon Nanotubes as Adsorbents for the Removal of Surface
   Water Contaminants ......................................... 615
   Jose E. Herrera and Jing Cheng
   19.1  Introduction ......................................... 615
   19.2  Structure and Synthesis of Carbon Nanotubes .......... 616
   19.3  Properties of Carbon Nanotubes ....................... 620
         19.3.1  Mechanical, Thermal, Electrical, and
                 Optical Properties of Carbon Nanotubes ....... 620
         19.3.2  Adsorption-Related Properties of Carbon
                 Nanotubes .................................... 620
   19.4  Carbon Nanotubes as Adsorbents ....................... 622
         19.4.1  Adsorption of Heavy Metal Ions ............... 624
                 19.4.1.1  Adsorption of Lead (II) ............ 624
                 19.4.1.2  Adsorption of Chromium (VI) ........ 626
                 19.4.1.3  Adsorption of Cadmium (II) ......... 628
                 19.4.1.4  Adsorption of Copper (II) .......... 629
                 19.4.1.5  Adsorption of Zinc (II) ............ 630
                 19.4.1.6  Adsorption of Nickel (II) .......... 632
                 19.4.1.7  Competitive Adsorption of Heavy
                           Metals Ions ........................ 633
         19.4.2  Adsorption of Other Inorganic Elements ....... 634
                 19.4.2.1  Adsorption of Fluoride ............. 635
                 19.4.2.2  Adsorption of Arsenic .............. 637
                 19.4.2.3  Adsorption of Americium-243
                           (III) .............................. 638
         19.4.3  Adsorption of Organic Compounds .............. 639
                 19.4.3.1  Adsorption of Dioxins .............. 639
                 19.4.3.2  Adsorption of 1,2-
                           Dichlorobenzene .................... 640
                 19.4.3.3  Adsorption of Trihalomethanes ...... 642
                 19.4.3.4  Adsorption of Polyaromatic
                           Compounds .......................... 643
   19.5  Summary of the Results, and Conclusions .............. 644
   References ................................................. 647

20 Molecular Imprinting with Nanomaterials .................... 651
   Kevin Flavin and Marina Resmini
   20.1  Introduction ......................................... 651
         20.1.1  Molecular Imprinting: The Concept ............ 652
                 20.1.1.1  History of Molecular Imprinting .... 653
                 20.1.1.2  Covalent Imprinting ................ 654
                 20.1.1.3  Noncovalent Imprinting ............. 654
                 20.1.1.4  Alternative Molecular Imprinting
                           Approaches ......................... 656
         20.1.2  Towards Imprinting with Nanomaterials ........ 656
   20.2  Molecular Imprinting in Nanoparticles ................ 657
         20.2.1  Emulsion Polymerization ...................... 657
                 20.2.1.1  Core-Shell Emulsion
                           Polymerization ..................... 657
                 20.2.1.2  Mini-Emulsion Polymerization ....... 660
         20.2.2  Precipitation Polymerization ................. 661
                 20.2.2.1  Applications and Variations ........ 662
                 20.2.2.2  Microgel/Nanogel Polymerization .... 664
         20.2.3  Silica Nanoparticles ......................... 665
         20.2.4  Molecularly Imprinted Nanoparticles:
                 Miscellaneous ................................ 667
   20.3  Molecular Imprinting with Diverse Nanomaterials ...... 668
         20.3.1  Nanowires, Nanotubes, and Nanofibers ......... 668
         20.3.2  Quantum Dots ................................. 669
         20.3.3  Fullerene .................................... 670
         20.3.4  Dendrimers ................................... 671
   20.4  Conclusions and Future Prospects ..................... 672
         References ........................................... 673

21 Near-Field Raman Imaging of Nanostructures and Devices ..... 677
   Ze Xiang Shen, Johnson Kasim, and Ting Yu
   21.1  Introduction ......................................... 677
   21.2  Near-Field Raman Imaging Techniques .................. 678
   21.3  Visualization of Si—С Covalent Bonding of Single
         Carbon Nanotubes Grown on Silicon Substrate .......... 682
   21.4  Near-Field Scanning Raman Microscopy Using TERS ...... 686
   21.5  Near-Field Raman Imaging Using Optically Trapped
         Dielectric Microsphere ............................... 688
   21.6  Conclusions .......................................... 695
   References ................................................. 695

22 Fullerene-Rich Nanostructures .............................. 699
   Fernando Langa and Jean-François Nierengarten
   22.1  Introduction ......................................... 699
   22.2  Fullerene-Rich Dendritic Branches .................... 700
   22.3  Photoelectrochemical Properties of Fullerodendrons
         and Their Nanoclusters ............................... 704
   22.4  Fullerene-Rich Dendrimers ............................ 708
   22.5  Conclusions .......................................... 712
   Acknowledgments ............................................ 712
   References ................................................. 713

23 Interactions of Carbon Nanotubes with Biomolecules:
   Advances and Challenges .................................... 715
   Dhriti Nepal and Kurt E. Ceckeler
   23.1  Introduction ......................................... 715
   23.2  Structure and Properties ............................. 715
   23.3  Debundalization ...................................... 716
   23.4  Noncovalent Functionalization ........................ 718
   23.5  Dispersion of Carbon Nanotubes in Biopolymers ........ 719
   23.6  Interaction of DNA with Carbon Nanotubes ............. 720
   23.7  Interaction of Proteins with Carbon Nanotubes ........ 723
   23.8  Technology Development Based on Biopolymer-Carbon
         Nanotube Products .................................... 729
         23.8.1  Diameter- or Chirality-Based Separation of
                 Carbon Nanotubes ............................. 734
         23.8.2  Fibers ....................................... 736
         23.8.3  Sensors ...................................... 737
         23.8.4  Therapeutic Agents ........................... 738
   23.9  Conclusions .......................................... 738
   Acknowledgments ............................................ 738
   References ................................................. 739

24 Nanoparticle-Cored Dendrimers and Hyperbranched Polymers:
   Synthesis, Properties, and Applications .................... 743
   Young-Seok Shon
   24.1  Introduction ......................................... 743
   24.2  Synthesis of Nanoparticle-Cored Dendrimers via
         the Direct Method, and their Properties and
         Application .......................................... 745
   24.3  Synthesis of Nanoparticle-Cored Dendrimers by
         Ligand Exchange Reaction, and their Properties and
         Applications ........................................ 753
   24.4  Synthesis of Nanoparticle-Cored Dendrimers by
         Dendritic Functionalization, and their Properties
         and Applications .................................... 758
         24.4.1  Nanoparticle-Cored Dendrimers by the
                 Convergent Approach ......................... 759
         24.4.2  Nanoparticle-Cored Dendrimers by
                 the Divergent Approach ...................... 761
   24.5  Synthesis of Nanoparticle-Cored Hyperbranched
         Polymers by Grafting on Nanoparticles ............... 763
   24.6  Conclusions and Outlook ............................. 764
   Acknowledgment ............................................ 764
   References ................................................ 765

25 Concepts in Self-Assembly ................................. 767
   Jeremy J. Ramsden
   25.1  Introduction ........................................ 767
   25.2  Theoretical Approaches to Self-Organization ......... 770
         25.2.1  Thermodynamics of Self-Organization ......... 770
         25.2.2  The "Goodness" of the Organization .......... 772
         25.2.3  Programmable Self-Assembly .................. 773
   25.3  Examples of Self-Assembly ........................... 774
         25.3.1  The Addition of Particles to the Solid /
                 Liquid Interface ............................ 774
                 25.3.1.1  Numerically Simulating RSA ........ 776
         25.3.2  Self-Assembled Monolayers (SAMs) ............ 776
         25.3.3  Quantum Dots (QDs) .......................... 778
         25.3.4  Crystallization and Supramolecular
                 Chemistry ................................... 779
         25.3.5  Biological Examples ......................... 780
         25.3.6  DNA ......................................... 781
         25.3.7  RNA and Proteins ............................ 781
   25.4  Self-Assembly as a Manufacturing Process ............ 783
   25.5  Useful Ideas ........................................ 784
         25.5.1  Weak Competing Interactions ................. 784
         25.5.2  Percolation ................................. 784
         25.5.3  Cooperativity ............................... 785
         25.5.4  Water Structure ............................. 786
   25.6  Conclusions and Challenges .......................... 787
         References .......................................... 787

26 Nanostructured Organogels via Molecular Self-Assembly ..... 791
   Arjun S. Krishnan, Kristen E. Roskov, and Richard J.
   Spontak
   26.1  Introduction ........................................ 791
   26.2  Block Copolymer Gels ................................ 793
         26.2.1  Concentration Effects ....................... 793
         26.2.2  Temperature Effects ......................... 801
         26.2.3  Microdomain Alignment ....................... 804
         26.2.4  Tensile Deformation ......................... 806
         26.2.5  Network Modifiers ........................... 808
                 26.2.5.1  Inorganic Nanofillers ............. 808
                 26.2.5.2  Polymeric Modifiers ............... 810
         26.2.6  Nonequilibrium Mesogels ..................... 812
         26.2.7  Special Cases ............................... 814
                 26.2.7.1  Liquid Crystals ................... 814
                 26.2.7.2  Ionic Liquids ..................... 815
         26.2.73 Multiblock Copolymers ....................... 815
                 26.2.7.4  Cosolvent Systems ................. 816
   26.3  Organic Gelator Networks ............................ 816
         26.3.1  Hydrogen Bonding ............................ 818
                 26.3.1.1  Amides ............................ 819
                 26.3.1.2  Ureas ............................. 820
                 26.3.1.3  Sorbitols ......................... 820
                 26.3.1.4  Miscellaneous LMOG Classes ........ 822
         26.3.2  7I-7U Stacking .............................. 822
         26.3.3  London Dispersion Forces .................... 824
         26.3.4  Special Considerations ...................... 824
                 26.3.4.1  Biologically Inspired Gelators .... 824
                 26.3.4.2  Isothermal Gelation ............... 825
                 26.3.4.3  Solvent Effects ................... 826
   26.4  Conclusions ......................................... 827
   Acknowledgments ........................................... 828
   References ................................................ 828

27 Self-assembly of Linear Polypeptide-based Block
   Copolymers ................................................ 835
   Sébastien Lecommandoux, Harm-Anton Klok, and Helmut
   Schlaad
   27.1  Introduction ........................................ 835
   27.2  Solution Self-assembly of Polypeptide-based Block
         Copolymers .......................................... 837
         27.2.1  Aggregation of Polypeptide-based Block
                 Copolymers .................................. 837
                 27.2.1.1  Polypeptide Hybrid Block
                           Copolymers ........................ 837
                 27.2.1.2  Block Copolypeptides .............. 841
         27.2.2  Polypeptide-based Hydrogels ................. 842
         27.2.3  Organic/Inorganic Hybrid Structures ......... 842
   27.3  Solid-state Structures of Polypeptide-based Block
         Copolymers .......................................... 844
         27.3.1  Diblock Copolymers .......................... 844
                 27.3.1.1  Polydiene-based Diblock
                           Copolymers ........................ 844
                 27.3.1.2  Polystyrene-based Diblock
                           Copolymers ........................ 845
                 27.3.1.3  Polyether-based Diblock
                           Copolymers ........................ 850
                 27.3.1.4  Polyester-based Diblock
                           Copolymers ........................ 851
                 27.3.1.5  Diblock Copolypeptides ............ 851
         27.3.2  Triblock Copolymers ......................... 852
                 27.3.2.1  Polydiene-based Triblock
                           Copolymers ........................ 852
                 27.3.2.2  Polystyrene-based Triblock
                           Copolymers ........................ 856
                 27.3.2.3  Polysiloxane-based Triblock
                           Copolymers ........................ 857
                 27.3.2.4  Polyether-based Triblock
                           Copolymers ........................ 858
                 27.3.2.5  Miscellaneous ..................... 862
   21.4  Summary and Outlook ................................. 864
   References ................................................ 865

28 Structural DNA Nanotechnology: Information-Guided
   Self-Assembly ............................................. 869
   Yonggang Ke, Yan Liu, and Hao Yan
   28.1  Introduction ........................................ 869
   28.2  Periodic DNA Nanoarrays ............................. 871
   28.3  Finite-Sized and Addressable DNA Nanoarrays ......... 872
   28.4  DNA Polyhedron Cages ................................ 874
   28.5  DNA Nanostructure-Directed Nanomaterial Assembly .... 876
   28.6  Concluding Remarks .................................. 877
   Acknowledgments ........................................... 878
   References ................................................ 878

Index ........................................................ 881


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:48 2019. Размер: 28,148 bytes.
Посещение N 1984 c 21.12.2010