Cellular and porous materials: thermal properties simulation and prediction (Weinheim, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCellular and porous materials: thermal properties simulation and prediction / ed. by A.Öchsner, G.E.Murch, M.J.S. de Lemos. - Weinheim: Wiley-VCH, 2008. - xvii, 422 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.419-422. - ISBN 978-3-527-31938-1
 

Оглавление / Contents
 
Preface ..................................................... XIII
List of Contributors .......................................... XV

1  Interfacial Heat Transport in Highly Permeable Media:
   A Finite Volume Approach .................................... 1
   Marcelo J.S. de Lemos and Marcelo B. Saito
   1.1  Introduction ........................................... 1
   1.2  Governing Equations .................................... 3
        1.2.1  Microscopic Transport Equations ................. 3
        1.2.2  Decomposition of Flow Variables in Space and
               Time ............................................ 4
        1.2.3  Macroscopic Flow and Energy Equations ........... 5
        1.2.4  Macroscopic Two-Energy Equation Modeling ........ 8
        1.2.5  Interfacial Heat Transfer Coefficient .......... 10
   1.3  Numerical Determination of hi ......................... 12
        1.3.1  Physical Model ................................. 12
        1.3.2  Periodic Flow .................................. 14
        1.3.3  Film Coefficient hi ............................ 15
   1.4  Results and Discussion ................................ 16
        1.4.1  Array of Square Rods ........................... 16
        1.4.2  Array of Elliptic Rods ......................... 16
        1.4.3  Correlations for Laminar and Turbulent Flows ... 20
   1.5  Conclusions ........................................... 27
        References ............................................ 27

2  Effective Thermal Properties of Hollow-Sphere-Structures:
   A Finite Element Approach .................................. 31
   Andreas Öchsner and Thomas Fiedler
   2.1  Introduction .......................................... 31
        2.1.1  Finite Element Method and Heat Transfer
               Problems ....................................... 31
        2.1.2  Hollow-Sphere Structures in the Context of
               Cellular Metals ................................ 33
   2.2  Finite Element Method ................................. 37
        2.2.1  Basics of Heat Transfer ........................ 37
        2.2.2  Weighted Residual Method ....................... 38
        2.2.3  Discretization and Principal Finite Element
               Equation ....................................... 39
        2.2.4  Four-Node Planar Bilinear Quadrilateral
               (Quad4) ........................................ 42
               2.2.4.1  General Rectangular Quad4 Element ..... 48
               2.2.4.2  Postprocessing ........................ 51
        2.2.5  Nonlinearities ................................. 53
   2.3  Modelling of Hollow-Sphere-Structures ................. 56
        2.3.1  Geometry, Mesh and Boundary Conditions ......... 56
        2.3.2  Material Properties ............................ 58
   2.4  Determination of the Effective Thermal
        Conductivities ........................................ 59
        2.4.1  Influence of the Morphology and Joining
               Technique ...................................... 60
        2.4.2  Influence of the Topology ...................... 62
        2.4.3  Temperature-Dependent Material Properties ...... 65
               2.4.3.1  Low Temperature Gradient .............. 65
               2.4.3.2  High Temperature Gradient ............. 66
        2.4.4  Application Example: Sandwich Structure ........ 67
   2.5  Conclusions ........................................... 68
        References ............................................ 69

3  Thermal Properties of Composite Materials and Porous
   Media: Lattice-Based Monte Carlo Approaches ................ 73
   Irina V. Belova and Graeme E. Murch
   3.1  Introduction .......................................... 73
   3.2  Monte Carlo Methods of Calculation of the Effective
        Thermal Conductivity .................................. 73
        3.2.1  The Einstein Equation .......................... 74
        3.2.2  Fick's First Law (Fourier Equation) ............ 80
   3.3  Monte Carlo Calculations of the Effective Thermal
        Conductivity .......................................... 81
        3.3.1  Effective Diffusion in Two-Component
               Composites / Porous Media ...................... 81
        3.3.2  Effective Diffusion in Three-Component
               Composites ..................................... 90
   3.4  Determination of Temperature Profiles ................. 91
        References ............................................ 94

4  Fluid Dynamics in Porous Media: A Boundary Element
   Approach ................................................... 97
   Leopold Škerget, Renata Jecl, and Janja Kramer
   4.1  Introduction .......................................... 97
        4.1.1  Transport Phenomena in Porous Media ............ 97
        4.1.2  Boundary Element Method for Fluid Dynamics
               in Porous Media ................................ 98
   4.2  Governing Equations ................................... 99
   4.3  Boundary Element Method .............................. 101
        4.3.1  Velocity-Vorticity Formulation ................ 102
        4.3.2  Boundary Domain Integral Equations ............ 102
        4.3.3  Discretized Boundary Domain Integral
               Equations ..................................... 205
        4.3.4  Solution Procedure ............................ 106
   4.4  Numerical Examples ................................... 107
        4.4.1  Double-Diffusive Natural Convection in
               Vertical Cavity ............................... 107
        4.4.2  Double-Diffusive Natural Convection in
               a Horizontal Porous Layer ..................... 113
   4.5  Conclusion ........................................... 117
        References ........................................... 117

5  Analytical Methods for Heat Conduction in Composites and
   Porous Media .............................................. 121
   Vladimir V. Mityushev, Ekaterina Pesetskaya, and Sergei
   V. Rogosin
   5.1  Introduction ......................................... 121
   5.2  Mathematical Models for Heat Conduction .............. 122
        5.2.1  General ....................................... 122
        5.2.2  Boundary Value Problems ....................... 127
        5.2.3  Conjugation Problem ........................... 128
        5.2.4  Complex Potentials ............................ 129
        5.2.5  Periodic Problems ............................. 132
   5.3  Effective Conductivity Tensor ........................ 134
   5.4  Review of Known Formulas ............................. 137
        5.4.1  Laminates ..................................... 137
        5.4.2  Clausius-Mossotti Approximation (CMA) ......... 137
        5.4.3  Effective Medium Theory (EMT) ................. 141
        5.4.4  Duality Theory for 2D Media ................... 144
   5.5  Network Approximations ............................... 146
   5.6  Doubly Periodic Problems ............................. 149
        5.6.1  Introduction to Elliptic Function Theory ...... 149
        5.6.2  Method of Functional Equations ................ 154
   5.7  Representative Cell .................................. 156
   5.8  Nonlinear Heat Conduction ............................ 159
   References ................................................ 160

6  Modeling of Composite Heat Transfer in Open-Cellular
   Porous Materials at High Temperatures ..................... 165
   Kouichi Kamiuto
   6.1  Introduction ......................................... 165
   6.2  Governing Equations .................................. 166
   6.3  Transport Properties and Heat Transfer Correlation ... 168
        6.3.1  Effective Thermal Conductivities .............. 168
        6.3.2  Thermal Dispersion Conductivities ............. 171
        6.3.3  Radiative Properties .......................... 173
        6.3.4  Fluid Mechanical Properties ................... 174
        6.3.5  Volumetric Heat Transfer Coefficient .......... 178
   6.4  Radiative Transfer ................................... 179
   6.5  Combined Conductive and Radiative Heat Transfer ...... 183
   6.6  Combined Forced-Convective and Radiative Heat
        Transfer ............................................. 186
        6.6.1  Analysis of Gas Enthalpy-Radiation
               Conversion System ............................. 187
        6.6.2  Analysis of Transpiration Cooling System in
               a Radiative Environment ....................... 189
   6.7  Conclusions and Recommendations ...................... 194
        References ........................................... 197

7  Thermal Conduction Through Porous Systems ................. 199
   Ramvir Singh
   7.1  Introduction ......................................... 199
   7.2  Theoretical Models ................................... 201
        7.2.1  Models for Thermal Conductivity ............... 201
        7.2.2  Discussion .................................... 219
   7.3  Experimental Techniques .............................. 221
        7.3.1  Thermal Conductivity Probe .................... 221
               7.3.1.1  Theory ............................... 223
        7.3.2  Differential Temperature Sensor Technique ..... 224
               7.3.2.1  Mathematical Analysis ................ 225
        7.3.3  Probe-Controlled Transient Technique .......... 227
               7.3.3.1  Mathematical Analysis ................ 227
        7.3.4  Plane Heat Source ............................. 230
               7.3.4.1  Theory ............................... 230
        7.3.5  Transient Plane Source (TPS) .................. 234
               7.3.5.1  Theory ............................... 234
        7.3.6  Discussion .................................... 236
        References ........................................... 237

8  Thermal Property of Lotus-Type Porous Copper and
   Application to Heat Sinks ................................. 239
   Tetsuro Ogushi, Hiroshi Chiba, Masakazu Tane, and Hideo
   Nakajima
   8.1  Introduction ......................................... 239
   8.2  Effective Thermal Conductivity of Lotus-Type Porous
        Copper ............................................... 241
        8.2.1  Measurement ................................... 241
               8.2.1.1  Definition of Effective Thermal
                        Conductivity ......................... 241
               8.2.1.2  Experimental Method .................. 242
               8.2.1.3  Specimen Preparation ................. 243
        8.2.2  Thermal Conductivity Parallel to Pores ........ 244
        8.2.3  Thermal Conductivity Perpendicular to Pores ... 245
        8.2.4  Effect of Pore Shape on Thermal
               Conductivity .................................. 248
        8.2.5  Effect of Pore Orientation on Thermal
               Conductivity .................................. 251
               8.2.5.1  Introduction ......................... 251
               8.2.5.2  EMF Theory ........................... 251
               8.2.5.3  Application of Extended EMF Theory
                        to Lotus Metals ...................... 252
   8.3  Application of Lotus-Type Porous Copper to Heat
        Sinks ................................................ 255
        8.3.1  Analysis of Fin Efficiency .................... 255
               8.3.1.1  Straight Fin Model ................... 255
               8.3.1.2  Numerical Analysis ................... 256
        8.3.2  Experiments of Heat Transfer
               Characteristics ............................... 258
               8.3.2.1  Experimental Method .................. 258
               8.3.2.2  Investigated Heat Sinks .............. 259
        8.3.3  Predictions of Heat Transfer
               Characteristics ............................... 260
               8.3.3.1  Conventional Groove Fins and
                        Microchannels ........................ 260
               8.3.3.2  Lotus-Type Porous Copper Fins ........ 260
        8.3.4  Comparison of Experiments with Predictions .... 261
   8.4  Conclusions .......................................... 264
        References ........................................... 265

9  Thermal Characterization of Open-Celled Metal Foams
   by Direct Simulation ...................................... 267
   Shankar Krishnan, Suresh V. Garimella, and Jayathi
   Y. Murthy
   9.1  Introduction ......................................... 267
   9.2  Foam Geometry ........................................ 269
   9.3  Mathematical Modeling ................................ 271
        9.3.1  Effective Thermal Conductivity ................ 271
        9.3.2  Computation of Flow and Heat Transfer
               Through Foam .................................. 272
               9.3.2.1  Flow and Temperature Periodicity ..... 272
               9.3.2.2  Governing Equations .................. 273
               9.3.2.3  Computational Details ................ 274
   9.4  Results and Discussion ............................... 274
        9.4.1  Direct Simulations of Foams: BCC Model ........ 275
               9.4.1.1  Effective Thermal Conductivity ....... 276
               9.4.1.2  Pressure Drop and Heat Transfer
                        Coefficient .......................... 278
        9.4.2  Direct Simulations of Foams: Effect of Unit
               Cell Structure ................................ 283
               9.4.2.1  Effective Thermal Conductivity ....... 284
               9.4.2.2  Pressure Drop and Nusselt Number ..... 285
   9.5  Conclusion ........................................... 286
        References ........................................... 288

10 Heat Transfer in Open-Cell Metal Foams Subjected
   to Oscillating Flow ....................................... 291
   Kai Choong Leong and Liwen Jin
   10.1 Introduction ......................................... 291
        10.1.1 Fluid Flow and Heat Transfer in Open-Cell
               Foams ......................................... 292
        10.1.2 Oscillating Flow Through Porous Media ......... 295
   10.2 Fluid Behavior of Oscillatory Flow in Open-Cell
        Metal Foams .......................................... 296
        10.2.1 Critical Properties of Open-Cell Foams ........ 297
        10.2.2 Analysis of Similarity Parameters ............. 299
        10.2.3 Oscillatory Flow Through a Channel Filled
               with Open-Cell Foams .......................... 302
               10.2.3.1 Effects of Kinetic Reynolds Number
                        and Dimensionless Flow Amplitude ..... 303
               10.2.3.2  Friction Factor in Metal Foam ....... 306
   10.3 Heat Transfer Characteristics of Oscillatory Flow
        in Open-Cell Foams ................................... 309
        10.3.1 Theoretical Analysis of Forced Convection in
               Oscillating Flow .............................. 309
        10.3.2 Oscillatory Heat Transfer in Open-Cell Metal
               Foams ......................................... 313
        10.3.3 Effects of Oscillation Frequency and Flow
               Amplitude ..................................... 315
        10.3.4 Heat Transfer Rate in Metal Foams ............. 318
   10.4 Thermal Management Using Highly Conductive Metal
        Foams ................................................ 323
        10.4.1 Steady and Oscillating Flows in Open-Cell
               Metal Foams ................................... 323
               10.4.1.1 Thermal Performance of Open-Cell
                        Metal Foams .......................... 323
               10.4.1.2 Comparison of Steady and
                        Oscillating Flows .................... 326
        10.4.2 Pumping Power of Oscillatory Cooling System ... 331
   10.5 Conclusions .......................................... 333
        References ........................................... 337

11 Radiative and Conductive Thermal Properties of Foams ...... 343
   Dominique Baillis and Rémi Coquard
   11.1 Introduction ......................................... 343
   11.2 Description of Cellular Foam Structure ............... 344
        11.2.1 Open-Cell Foams ............................... 344
        11.2.2 Closed-Cell Foams ............................. 344
   11.3 Modeling of Foam Structure ........................... 346
        11.3.1 Cell Modeling ................................. 346
        11.3.2 Particle Modeling ............................. 347
   11.4 Determination of Foam Conductive Properties .......... 347
        11.4.1 Analytical / Semi-analytical Models ........... 348
               11.4.1.1 Polymer Foams ........................ 348
               11.4.1.2 Ceramic, Metallic and Carbon Foams ... 350
        11.4.2 Numerical Models .............................. 352
        11.4.2.1 Polymer Foams ............................... 352
        11.4.2.2 Ceramic, Metallic and Carbon Foams .......... 353
   11.5 Determination of Cellular Foam Radiative
        Properties ........................................... 355
        11.5.1 Theoretical Prediction of Radiative
               Properties of Particulate Media ............... 356
               11.5.1.1 Single-Particle Properties ........... 356
               11.5.1.2 Dispersion Properties ................ 357
        11.5.2 Parameter Identification Method ............... 357
        11.5.3 Application to Open-Cell and Closed-Cell
               Foams ......................................... 359
               11.5.3.1 Open-Cell Carbon Foam ................ 359
               11.5.3.2 Metallic Foam ........................ 361
               11.5.3.3 Closed-Cell Foam: Case of Low-
                        Density EPS Foams .................... 362
               11.5.3.4 Closed-Cell Foam: Case of XPS and
                        PUR Foams ............................ 367
   11.6 Combined Conductive and Radiative Heat Transfer in
        Foam ................................................. 369
        11.6.1 Heat Transfer Equations for Cellular Foam
               Insulation .................................... 369
        11.6.2 Resolution of the Heat Transfer Equations ..... 370
               11.6.2.1 Resolution of the Radiative
                        Transfer Equation / Rosseland
                        Approximation ........................ 370
               11.6.2.2 Resolution of the Radiative
                        Transfer Equation / Discrete
                        Ordinates Method ..................... 371
               11.6.2.3 Resolution of the Energy Equation .... 372
        11.6.3 Equivalent Thermal Conductivity Results ....... 372
               11.6.3.1 Closed-Cell EPS Foams ................ 372
               11.6.3.2 Closed-Cell XPS and PUR Foams ........ 375
               11.6.3.3 Metallic Open-Cell Foams ............. 376
               11.6.3.4 Open-Cell Carbon Foams ............... 380
   11.7 Conclusions .......................................... 381
        References ........................................... 382

12 On the Application of Optimization Techniques to Heat
   Transfer in Cellular Materials ............................ 385
   Pablo A. Muñoz-Rojas, Emilio C. Nelli Silva, Eduardo
   L. Cardoso, and Miguel Vaz Junior
   12.1 Introduction ......................................... 385
   12.2 Optimization Approaches .............................. 386
        12.2.1 Evolutionary Algorithms (EAs) ................. 387
               12.2.1.1  Basic Concepts in Evolutionary
                         Algorithms .......................... 387
        12.2.2 Mathematical Programming using Gradient-
               Based Procedures .............................. 389
   12.3 Periodic Composite Materials ......................... 389
        12.3.1 Homogenization of Heat Properties in
               Periodic Composite Materials .................. 390
        12.3.2 Functionally Graded Materials ................. 394
        12.3.3 Numerical Implementation of Homogenization .... 395
        12.3.4 Material Design: Shape and Topology
               Optimization of a Unit Cell ................... 397
               12.3.4.1 Shape Optimization ................... 398
               12.3.4.2 Topology Optimization ................ 401
   12.4 General Applications Review .......................... 403
   12.5 Results Obtained with the FGM Approach in this
        Work ................................................. 410
   12.6 Conclusions .......................................... 413
   References ................................................ 414

Index ........................................................ 419


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:48 2019. Размер: 25,147 bytes.
Посещение N 1966 c 21.12.2010