Photonic crystals: towards nanoscale photonic devices (Berlin; Heidelbreg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPhotonic crystals: towards nanoscale photonic devices / J.M.Lourtioz et al.; with a contribution by D.Pagnoux; transl. by P. de Fornel. - 2nd ed. - Berlin; Heidelbreg: Springer, 2008. - xviii, 514 p.: ill. (some col.). - Ref.: p.467-507. - Ind.: 509-514. - ISBN 978-3-540-78346-6
 

Оглавление / Contents
 
Foreword ........................................................ V

Part I.   Theoretical Models for Photonic Crystals .............. 1

Introduction to Part I .......................................... 3

1.  Models for Infinite Crystals ................................ 5
    1.1.  Plane Wave Expansion .................................. 5
          1.1.1.  Maxwell's Equations ........................... 5
          1.1.2.  The Floquet-Bloch Theorem ..................... 6
          1.1.3.  Hermiticity of the Field Operator ............ 10
          1.1.4.  Simple Examples of Bloch Functions ........... 11
          1.1.5.  General Plane Wave Method .................... 13
    1.2.  Other Methods for the Calculation of the Photonic
          Band Gaps of an Infinite Crystal: the KKR Method ..... 21
    1.3.  Photonic Band Diagram ................................ 21
          1.3.1.  The Irreducible Brillouin Zone ............... 22
          1.3.2.  Band Diagrams of One-Dimensional Crystals .... 25
          1.3.3.  Band Diagrams of Two-Dimensional
                  Photonic Crystals ............................ 33
          1.3.4.  Off-Axis Propagation in One and
                  Two-Dimensional Photonic Crystals ............ 40
          1.3.5.  Band Diagrams of Three-Dimensional Photonic
                  Crystals ..................................... 41
    1.4.  Infinite Crystals with Defects ....................... 43
          1.4.1.  Point Defects ................................ 44
          1.4.2.  Coupling of Point Defects .................... 50
          1.4.3.  Supercell Method ............................. 52
          1.4.4.  Methods derived from Tight-Binding Methods
                  in Solid State Physics ....................... 53
          1.4.5.  Extended Defects ............................. 54
          1.4.6.  Semi-Infinite Crystals and Surface Defects ... 56
          1.4.7.  Density of States in Photonic Crystals
                  with or without Defects ...................... 59

2.  Models for Finite Crystals ................................. 65
    2.1.  Transfer, Reflection and Transmission Matrix
          Formulations ......................................... 65
          2.1.1.  Reflection and Transmission Matrices ......... 66
          2.1.2.  Pendry Method ................................ 72
    2.2.  Finite Difference in Time Domain (FDTD) Method ....... 80
          2.2.1.  Numerical Formulation of Maxwell's
                  Equations .................................... 80
          2.2.2.  Case of an Incident Pulse .................... 84
          2.2.3.  Absorption Region and Boundary Conditions .... 86
          2.2.4.  Practical Implementation and Convergence
                  of the FDTD Method ........................... 87
          2.2.5.  Examples of Results obtained for a
                  Point Source with the FDTD Method ............ 89
    2.3.  Scattering Matrix Method ............................. 91
    2.4.  Other Methods: Integral and Differential Methods,
          Finite Element Method, Effective Medium Theory ...... 100
    2.5.  Numerical Codes available for the Modelling of
          Photonic Crystals ................................... 104

3.  Quasi-Crystals and Archimedean Tilings .................... 107
    3.1.  Photonic Quasi-Crystals ............................. 108
    3.2.  Archimedean Tilings ................................. 111
    3.3.  From Photonic Quasi-Crystals to the Localization
          of Light ............................................ 115

4.  Specific Features of Metallic Structures .................. 121
    4.1.  Bulk Metals: Drude Model, Skin Effect and
          Metallic Losses ..................................... 121
          4.1.1.  Drude Model ................................. 123
          4.1.2.  Low-Frequency Region: Skin Effect and
                  Metallic Losses ............................. 124
          4.1.3.  From the Infrared to the Visible and
                  UV Regions .................................. 125
    4.2.  Periodic Metallic Structures at Low Frequencies ..... 126
          4.2.1.  Plasmon-Like Photonic Band Gap .............. 126
          4.2.2.  Transmission Spectra of Metallic and
                  Dielectric Photonic Crystals ................ 129
          4.2.3.  Complete Band Gaps in Metallic Photonic
                  Crystals .................................... 131
          4.2.4.  Structures with Continuous Metallic
                  Elements and Structures with Discontinuous
                  Metallic Elements ........................... 132
    4.3.  Periodic Metallic Structures at Optical
          Frequencies. Idealized Case of a Dispersive
          Lossless Dielectric ................................. 134
    4.4.  Surface Waves ....................................... 137
          4.4.1.  Surface Plasmons at a Metal/Dielectric
                  Plane Interface ............................. 137
          4.4.2.  Propagation of Surface Plasmons along a
                  Periodically Modulated Metal/Dielectric
                  Interface and Local Enhancement of the
                  Field ....................................... 140
          4.4.3.  Wood's Anomalies: Phenomenological Theory ... 144
          4.4.4.  Photonic Band Gaps for the Propagation of
                  Surface Plasmons at Periodically Modulated
                  Metal/Dielectric Interfaces ................. 148
          4.4.5.  The Photon Sieve ............................ 150
          4.4.6.  Surface Waves in Metals at
                  Radiofrequencies ............................ 151

Part II.  Optical Properties of Photonic Crystals ............. 157

Introduction to Part II.  The 'Many Facets' of Photonic
Crystals ...................................................... 159

5.  Control of Electromagnetic Waves .......................... 163
    5.1.  The Photonic Crystal Mirror ......................... 163
          5.1.1.  The Semi-Infinite Photonic Crystal: Mirror
                  or Diffraction Grating? ..................... 163
          5.1.2.  Specular Reflection at a Semi-Infinite
                  Crystal ..................................... 166
          5.1.3.  Finite Photonic Crystals as
                  Semi-Transparent Mirrors .................... 167
    5.2.  Photonic Crystal Waveguides ......................... 168
          5.2.1.  Index Guiding and Photonic Bandgap
                  Guiding ..................................... 168
          5.2.2.  Three-Dimensional Photonic Crystal
                  Waveguides .................................. 170
          5.2.3.  Two-Dimensional Photonic Crystal
                  Waveguides .................................. 172
          5.2.4.  Density of States and Multiplicity of
                  Guided Modes ................................ 174
          5.2.5.  Coexistence of Index Guiding and Photonic
                  Bandgap Guiding ............................. 178
    5.3.  Resonators .......................................... 185
          5.3.1.  Localized Modes. Origin of Losses ........... 185
          5.3.2.  Density of States ........................... 187
          5.3.3.  Waveguide formed by Coupled Cavities ........ 188
    5.4.  Hybrid Structures with Index Guiding. The Light
          Line ................................................ 190
          5.4.1.  Light Cone of a Uniform Waveguide ........... 190
          5.4.2.  Fictitious Periodicity ...................... 191
          5.4.3.  True One-Dimensional Periodicity ............ 191
          5.4.4.  Channel Waveguides in Two-Dimensional
                  Photonic Crystals ........................... 195

6.  Refractive Properties of Photonic Crystals and
    Metamaterials ............................................. 197
    6.1.  Phase Refractive index, Group Refractive Index
          and Energy Propagation .............................. 197
          6.1.1.  Phase Velocity and Group Velocity ........... 197
          6.1.2.  Refractive Indexes and Dispersion
                  Diagrams .................................... 201
          6.1.3.  Effective Phase Index and Group
                  Refractive Index ............................ 202
    6.2.  Refraction of Waves at the Interface between
          a Periodic Medium and a Homogeneous Medium .......... 203
          6.2.1.  Summary of Refraction Laws in Homogeneous
                  Media ....................................... 203
          6.2.2.  Some Weil-Known Anisotropic Media:
                  Birefringent Solid-State Crystals ........... 205
          6.2.3.  Construction of the Waves Transmitted in
                  a Photonic Crystal .......................... 206
    6.3.  Superprism and Negative Refraction Effects .......... 207
          6.3.1.  Superprism Effect ........................... 207
          6.3.2.  Ultra-Refraction and Negative Refraction .... 208
    6.4.  Metamaterials ....................................... 210
          6.4.1.  Simultaneous Control of the Dielectric
                  Permittivity and the Magnetic
                  Permeability ................................ 210
          6.4.2.  Negative Refraction in a Slab of Perfect
                  Left-Handed Material ........................ 212
          6.4.3.  Stigmatism of a Slab of Perfect
                  Left-Handed Material ........................ 215
          6.4.4.  Perfect Lens or Superlens? .................. 217
          6.4.5.  Fabrication of Negative Refractive Index
                  Metamaterials ............................... 218
          6.4.6.  Electromagnetic Cloaking .................... 221

7.  Confinement of Light in Zero-Dimensional Microcavities .... 225
    7.1.  Microcavity Sources. Principles and Effects ......... 226
          7.1.1.  A Classical Effect: the Angular
                  Redistribution of the Spontaneous Emission
                  and the Example of Planar Microcavities ..... 226
    7.2.  Three-Dimensional Optical Confinement in Zero-
          Dimensional Microcavities ........................... 245
          7.2.1. Different Types of Zero-Dimensional
                 Microcavities ................................ 245
          7.2.2.  Control of the Spontaneous Emission in
                  Weak Coupling Regime. Some Experimental
                  Results ..................................... 250
          7.2.3.  Single-Mode Coupling of the Spontaneous
                  Emission .................................... 254
          7.2.4.  Towards Strong Coupling Regime for Solid
                  State 'Artificial Atoms' .................... 256

8.  Nonlinear Optics with Photonic Crystals ................... 261
    8.1.  The Problem of Phase Matching ....................... 262
    8.2.  χ1 Photonic Crystals ................................ 265
          8.2.1.  One-Dimensional χ1 Photonic Crystals ........ 265
          8.2.2.  Two-Dimensional χ1 Photonic Crystals ........ 273
    8.3.  χ2 Photonic Crystals ................................ 274
          8.3.1.  One-Dimensional χ2 Photonic Crystals ........ 274
          8.3.2.  Two-Dimensional χ2 Photonic Crystals ........ 277
    8.4.  Photonic Crystals with Third Order Susceptibility ... 279

Part III. Fabrication, Characterization and Applications
          of Photonic Bandgap Structures ...................... 283

Introduction to Part III ...................................... 285

9.  Planar Integrated Optics .................................. 287
    9.1.  Objectives, New Devices and Challenges .............. 287
    9.2.  Fundamentals of Integrated Optics and Introduction
          of Photonic Crystals ................................ 290
          9.2.1.  Conventional Waveguides ..................... 290
          9.2.2.  Photonic Crystals in Integrated Optics ...... 295
    9.3.  Planar Photonic Crystals in the Substrate
          Approach ............................................ 306
          9.3.1.  DFB and DBR Laser Diode Structures .......... 306
          9.3.2.  Photonic Crystals, a Strong Perturbation
                  for Guided Modes ............................ 307
          9.3.3.  Choice of the Diameter of the Holes and
                  of the Period of the Crystal ................ 309
          9.3.4.  Specific Parameters for InP- and
                  GaAs-Based Systems .......................... 310
          9.3.5.  Deep Etching ................................ 310
    9.4.  Membrane Waveguide Photonic Crystals ................ 311
          9.4.1.  Free-Standing Membranes ..................... 311
          9.4.2.  Reported Membranes .......................... 314
    9.5.  Macroporous Silicon Photonic Substrates ............. 314
    9.6.  Characterization Methods for Photonic Crystals in
          Integrated Optics ................................... 318
          9.6.1.  Internal Light Source Method ................ 318
          9.6.2.  End-Fire Method ............................. 321
          9.6.3.  Wide-Band Transmission-Reflection
                  Spectroscopy ................................ 324
    9.7.  Losses of Photonic Crystal Integrated Optical
          Devices ............................................. 324
          9.7.1.  Analysis of Losses in Planar Photonic
                  Crystal Waveguides .......................... 324
          9.7.2.  Measurement of Propagation Losses in
                  Straight Photonic Crystal Channel
                  Waveguides .................................. 326
          9.7.3.  Losses in the Slow-Light Regime ............. 329
          9.7.4.  Waveguide Bends in Photonic Crystals and
                  Bend Losses ................................. 329
          9.7.5.  Photonic Crystal Resonators and Quality
                  Factors ..................................... 330
    9.8.  Photonic Crystal Devices and Functions: Recent
          Developments ........................................ 333
          9.8.1.  Classification of devices ................... 333
          9.8.2.  Coupled Resonators and Waveguides ........... 335
          9.8.3.  Very high-Q cavities ........................ 337
          9.8.4.  Other Devices and Optical Functions ......... 339

10. Microsources .............................................. 345
    10.1. High-Efficiency Light-Emitting Diodes ............... 345
          10.1.1. Solutions for the Extraction of Light
                  without Confinement ......................... 345
          10.1.2. Enhanced Extraction Efficiency through
                  Planar Confinement .......................... 347
          10.1.3. Increase of the Extraction Efficiency
                  using Two-Dimensional Photonic Crystals ..... 350
    10.2. Ridge-Type Waveguide Lasers confined by Photonics
          Crystals ............................................ 352
    10.3. Bulk Photonic Crystal Band Edge Lasers .............. 355
    10.4. Photonic crystal VCSELs ............................. 358
    10.5. Microcavity Lasers .................................. 360
    10.6. Potential Interest of Single-Photon Sources ......... 364

11. Photonic Crystal Fibres ................................... 371
    11.1. Another Implementation of Periodic Structures ....... 371
    11.2. Fabrication of Microstructured Optical Fibres ....... 372
    11.3. Solid-Core Microstructured Optical Fibres ........... 375
          11.3.1. Confinement Losses and Second Mode
                  Transition .................................. 375
          11.3.2. Attenuation and Bend Loss ................... 378
          11.3.3. Chromatic Dispersion Properties ............. 378
          11.3.4. Main Applications of Solid-Core
                  Microstructured Optical Fibres .............. 380
    11.4. True Photonic Crystal Fibres (PCF) .................. 382
          11.4.1. Photonic Bandgap Cladding ................... 382
          11.4.2. Losses of Photonic Crystal Fibres with
                  Finite Cladding ............................. 385
          11.4.3. Photonic Crystal Fibres with Optimised
                  Structures .................................. 387
          11.4.4. Main Applications of Photonic Crystal
                  Fibres ...................................... 389

12. Three-Dimensional Structures in Optics .................... 393
    12.1. Geometrical Configurations proposed for Three-
          Dimensional Structures .............................. 394
          12.1.1. Structures with Omnidirectional Photonic
                  Band Gaps ................................... 394
          12.1.2. Incomplete Band Gap Three-Dimensional
                  Structures .................................. 397
    12.2. Examples of Fabrication Processes and Realizations
          of Three-Dimensional Photonic Crystals in the
          Optical Region ...................................... 399
          12.2.1. Complete Band Gap Structures ................ 399
    12.3. Metallic Three-Dimensional Photonic Crystals in
          the Optical Region .................................. 410
    12.4. Three-Dimensional Photonic Crystals 
          Light Emitters ...................................... 412

13. Microwave and Terahertz Antennas and Circuits ............. 413
    13.1. Photonic Crystal Antennas ........................... 414
          13.1.1. Photonic-Crystal Antenna Substrates ......... 415
          13.1.2. Photonic-Crystal Antenna Mirrors ............ 418
          13.1.3. Photonic Crystal Antenna Radomes or
                  Superstrates ................................ 422
    13.2. Controllable Structures and Metamaterials ........... 424
          13.2.1. Principles and Characteristics of
                  Electrically Controllable Photonic
                  Crystals .................................... 424
          13.2.2. Electrically Controllable Photonic
                  Crystal Antennas ............................ 426
          13.2.3. Antennas and Metamaterials .................. 429
    13.3. Microwave Circuits and Ultra-Compact Photonic
          Crystals ............................................ 430
          13.3.1. Ultra-Compact Photonic Crystals ............. 430
          13.3.2. Microwave Filters and Waveguides realised
                  from Ultra-Compact Photonic Crystals ........ 433
    13.4. From Microwaves to Terahertz Waves .................. 435
    13.5. From Microwaves to Optics ........................... 436
          13.5.1. Impedance Matching of Photonic Waveguides ... 437
          13.5.2. Photonic Crystal THz Imaging System ......... 439
          13.5.3. 'Microwave Inspired' Nanostructures and
                  Nanodevices ................................. 440

Conclusion and Perspectives ................................... 443

Appendices .................................................... 447
Appendix A. Scattering Matrix Method: Determination of the
            Field for a Finite Two-Dimensional Crystal
            formed by Dielectric Rods ......................... 449
A.1. Incident Field ........................................... 449
A.2. Field inside the Rods .................................... 449
A.3. Field in the Vicinity of a Rod ........................... 452
Appendix B. Magneto-Photonic Cystals .......................... 459
Appendix C. Stigmatism of a Slab of Perfect Left-Handed
            Material: Integral for the Total Field ............ 463

References .................................................... 467

Index ......................................................... 509


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:52 2019. Размер: 24,143 bytes.
Посещение N 1773 c 25.01.2011