Semiconductor spintronics and quantum computation (Berlin; Heidelbrg; New York, 2002). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSemiconductor spintronics and quantum computation / ed. by D.D.Awschalom, D.Loss, N.Samarth. - Berlin; Heidelbrg; New York: Springer, 2002. - xv, 311 p.: ill. - (Nanoscience and technology). - Incl. bibl. ref. - Ind.: p.307-311. - ISSN 1434-4904; ISBN 3-540-42176-9
 

Оглавление / Contents
 
1  Ferromagnetic III-V Semiconductors and Their
   Heterostructures
   Hideo Ohno ................................................... 1
   1.1  Introduction ............................................ 1
   1.2  Preparation of III-V Based Ferromagnetic 
        Semiconductors .......................................... 2
   1.3  Magnetic Properties ..................................... 4
   1.4  Transport Properties .................................... 6
        1.4.1  The Hall Effect .................................. 6
        1.4.2  Temperature and Magnetic Field Dependence of
               Resistivity ...................................... 8
   1.5  Carrier-Induced Ferromagnetism ......................... 12
   1.6  Basic Properties of Ferromagnetic III-V Semiconductor
        Heterostructures ....................................... 16
   1.7  Spin-Dependent Scattering and Tunnel
        Magnetoresistance in Trilayer Structures ............... 17
   1.8  Ferromagnetic Emitter Resonant Tunneling Diodes ........ 19
   1.9  Spin-Injection in Ferromagnetic Semiconductor
        Heterostructures ....................................... 21
   1.10 Electric-Field Control of Hole-Induced
        Ferromagnetism ......................................... 23
   1.11 Summary and Outlook .................................... 25
   References .................................................. 26
2  Spin Injection and Transport in Micro- and Nanoscale
   Devices
   Hong X. Tang, F.G. Monzon, Friso J. Jedema, Andrei
   T. Filip, Bart J. van Wees, and Michael L. Roukes ........... 31
   2.1  Overview ............................................... 31
   2.2  Background ............................................. 32
        2.2.1  Spin Polarized Tunneling ........................ 32
        2.2.2  Spin Injection in Clean Bulk Metals ............. 33
        2.2.3  Conceptual Picture of Spin Injection ............ 36
        2.2.4  Spin Injection in Impure Metal Films ............ 39
   2.3  Toward a Semiconducting "Spin Transistor" .............. 40
        2.3.1  Why a Spin Transistor? .......................... 40
        2.3.2  Why Semiconductors? ............................. 40
        2.3.3  Concept ......................................... 41
        2.3.4  Prerequisites for Realizing a Spin Transistor ... 42
        2.3.5  Spin Lifetime in the Conduction Channel ......... 43
        2.3.6  Gate Control of the Spin Orbit Interaction
               (Theory) ........................................ 43
        2.3.7  Gate Control of the Spin Orbit Interaction
               (Experiment) .................................... 44
   2.4  Initial Experiments on Spin Injection in
        Semiconductor Heterostructures ......................... 47
        2.4.1  Motivation and Initial Data ..................... 47
        2.4.2  Local Hall Effect ............................... 50
        2.4.3  Results from Smaller, Optimized Devices ......... 51
   2.5  Spin Injection in Diffusive Systems .................... 55
        2.5.1  Basic Model for Spin Transport in Diffusive
               Systems ......................................... 56
        2.5.2  The F/N Interface ............................... 58
        2.5.3  Spin Accumulation in Multiterminal Spin Valve
               Structures ...................................... 59
        2.5.4  Observation of Spin-Injection and Spin-
               Accumulation in an All-Metal Spin Valve ......... 61
        2.5.5  Comparison with the Johnson "Spin Transistor" ... 62
        2.5.6  Future Prospects for Spin Accumulation and
               Spin Transport in All Metal Devices ............. 63
        2.5.7  Spin Injection in a Diffusive Semiconductor ..... 63
        2.5.8  Conductivity Mismatch ........................... 63
        2.5.9  Possible Solutions to Conductivity Mismatch ..... 66
   2.6  Spin Transport in the Ballistic Regime ................. 66
        2.6.1  Multiprobe Model for Ballistic Spin Polarized
               Transport ....................................... 68
        2.6.2  Results of Spin Resolved 4-Probe Model .......... 72
        2.6.3  8-Probe Model: Junction, Bulk, and Boundary
               Scattering ...................................... 75
        2.6.4  The Spin Transistor: A Closer Look .............. 77
        2.6.5  Other Theoretical Treatments .................... 78
   2.7  Projections and Conclusions ............................ 79
        2.7.1  Retrospective: The Spin Transistor .............. 79
        2.7.2  Recent Advances in Spin Transport Across
               Interfaces ...................................... 81
        2.7.3  Recent Advances in Spin Injection Via
               Semimagnetic Semiconductors ..................... 85
        2.7.4  Recent Advances in Spin Propagation in
               Semiconductors .................................. 85
        2.7.5  Detection of Nonequilibrium Spin Polarization ... 86
   References .................................................. 87
3  Electrical Spin Injection: Spin-Polarized Transport from
   Magnetic into Non-Magnetic Semiconductors 
   Georg Schmidt and Laurens W. Molenkamp ...................... 93
   3.1  Introduction ........................................... 93
   3.2  Electrical Spin Injection .............................. 94
        3.2.1  Diluted Magnetic Semiconductors ................. 94
        3.2.2  The Optical Detection of Spin Injection ......... 95
        3.2.3  The Spin Aligner LED ............................ 96
        3.2.4  Experimental Results ............................ 97
        3.2.5  Exclusion of Side Effects ....................... 99
        3.2.6  Hole Injection ................................. 100
   3.3  A Novel Magnetoresistance Effect ...................... 101
        3.3.1  Theoretical Prediction ......................... 101
        3.3.2  Device Layout .................................. 102
        3.3.3  Results and Interpretation ..................... 103
   3.4  Outlook ............................................... 104
   References ................................................. 105
4  Spin Dynamics in Semiconductors
   Michael E. Flatté, Jeff M. Byers, and Wayne H. Lau ......... 107
   4.1  Introduction .......................................... 107
   4.2  Fundamentals of Semiconductor Spin Coherence .......... 108
        4.2.1  Coherent Ensembles of Spins .................... 109
        4.2.2  Mobile Electron Decoherence Via the Spin-
               Orbit Interaction .............................. 110
        4.2.3  Sources of Inversion Asymmetry ................. 115
        4.2.4  Comparison with Ultrafast Probes of Orbital
               Coherence ...................................... 121
        4.2.5  Concluding Remarks ............................. 123
   4.3  Precessional Spin Coherence Times in Bulk and
        Nanostructure Semiconductors .......................... 123
        4.3.1  Magnitude of the Fluctuating Field ............. 125
        4.3.2  Calculation of the Effective Time for Field
               Reversal ....................................... 126
        4.3.3  Spin Decoherence Times in Bulk III-V
               Semiconductors ................................. 126
        4.3.4  Spin Decoherence in III-V (001) Quantum
               Wells .......................................... 127
   4.4  Spin Transport ........................................ 131
        4.4.1  Drift-Diffusion Equations ...................... 132
        4.4.2  Low-Field Motion of Spin Packets in
               Nonmagnetic Semiconductors ..................... 133
        4.4.3  Diffusion and Mobility of Packets in GaAs ...... 135
        4.4.4  Influence of Many-Body Effects on Low-Field
               Spin Diffusion ................................. 137
        4.4.5  Motion of Spin Packets in Spin-Polarized
               Semiconductors ................................. 138
        4.4.6  High-Field Spin Transport in the Diffusive
               Regime ......................................... 139
   4.5  Spin Transport in Inhomogeneous Structures ............ 139
        4.5.1  Transport Across the Ferromagnet /
               Semiconductor Boundary ......................... 140
   4.6  Conclusion ............................................ 142
   References ................................................. 143
5  Optical Manipulation, Transport and Storage of Spin
   Coherence in Semiconductors
   David D. Awschalom and Nitin Samarth ....................... 147
   5.1  Introduction .......................................... 147
   5.2  Experimental Techniques for Measuring Spin Coherence
        in Semiconductors ..................................... 148
   5.3  Electron Spin Coherence in Bulk Semiconductors ........ 153
   5.4  Electron Spin Coherence in Semiconductor Quantum
        Dots .................................................. 160
   5.5  Coherent Spin Transport in Semiconductors ............. 162
        5.5.1  Lateral Drag in GaAs ........................... 162
        5.5.2  Transport Across Heterointerfaces in ZnSe/
               GaAs ........................................... 166
   5.6  Spin Coherence and Magnetic Resonance ................. 175
        5.6.1  Electron Paramagnetic Resonance in II-VI
               Magnetic Semiconductor Quantum Structures ...... 175
        5.6.2  All-Optical Nuclear Magnetic Resonance in
               Semiconductors ................................. 177
   5.7  Coherent Manipulation of Spin in Semiconductors ....... 181
   5.8  Spin Coherence in Hybrid Ferromagnet/Semiconductor
        Heterostructures ...................................... 183
        5.8.1  Ferromagnetic Imprinting of Nuclear Spins
               in Semiconductors .............................. 184
        5.8.2  Spontaneous Electron Spin Coherence in n-GaAs
               Produced by Ferromagnetic Proximity
               Polarization ................................... 188
   5.9  Summary and Outlook ................................... 190
   References ................................................. 192
6  Spin Condensates in Semiconductor Microcavities
   Jeremy J. Baumberg ......................................... 195
   6.1  Introduction .......................................... 195
   6.2  Polariton Properties .................................. 196
        6.2.1  Strongly Coupled Microcavity Dispersion ........ 196
        6.2.2  Polariton Dynamics and Pair Scattering ......... 200
   6.3  Experiments ........................................... 202
        6.3.1  Experimental Geometry .......................... 202
        6.3.2  Microcavity Sample ............................. 203
        6.3.3  Parametric Scattering .......................... 205
   6.4  Condensate Dynamics ................................... 211
        6.4.1  Polariton Interferometry ....................... 211
        6.4.2  Macroscopic Quantum States ..................... 214
        6.4.3  Quantum-Correlated Pairs ....................... 216
        6.4.4  Conclusions .................................... 217
   References ................................................. 218
7  Spins for Quantum Information Processing
   David P. DiVincenzo ........................................ 221
   7.1  Introduction .......................................... 221
        7.1.1 The Requirements ................................ 222
   7.2  Timeline .............................................. 224
   7.3  Final Thoughts ........................................ 226
   References ................................................. 227
8  Electron Spins in Quantum Dots as Qubits for Quantum
   Information Processing 
   Guido Burkard and Daniel Loss .............................. 229
   8.1  Introduction .......................................... 229
        8.1.1  Quantum Computing .............................. 230
        8.1.2  Quantum Communication .......................... 231
        8.1.3  Quantum Dots ................................... 231
   8.2  Requirements for Quantum Computing .................... 232
        8.2.1  Coherence ...................................... 232
        8.2.2  Slow Spin Relaxation in GaAs Semiconductor
               Quantum Dots ................................... 233
        8.2.3  Scalability .................................... 236
        8.2.4  Switching ...................................... 236
        8.2.5  Quantum Error Correction ....................... 238
        8.2.6  Gate Precision ................................. 239
        8.2.7  Initialization ................................. 240
   8.3  Coupled Quantum Dots as Quantum Gates ................. 240
        8.3.1  Lateral Coupling ............................... 241
        8.3.2  Vertical Coupling .............................. 244
        8.3.3  Anisotropic Exchange ........................... 245
        8.3.4  Superexchange .................................. 247
        8.3.5  Accessing the Exchange Interaction J Between
               the Spins in Coupled Quantum Dots Via the
               Kondo Effect ................................... 248
   8.4  Single-Spin Rotations ................................. 250
        8.4.1  Local Magnetic Coupling ........................ 251
        8.4.2  Local g-Factor Coupling ........................ 251
        8.4.3  Quantum Computing with Exchange Interactions
               Only ........................................... 251
   8.5  Read-Out of a Single Spin ............................. 253
        8.5.1  Spontaneous Magnetization ...................... 253
        8.5.2  Measuring Spin Via Charge ...................... 253
        8.5.3  Coupled Dots as Entangler ...................... 254
        8.5.4  Spin Filter .................................... 254
        8.5.5  Berry Phase Controlled Spin Filter ............. 255
        8.5.6  Detection of Single-Spin Decoherence ........... 256
        8.5.7  Rabi Oscillations and Pulsed ESR ............... 257
        8.5.8  Spin Read-Out .................................. 258
        8.5.9  Optical Measurements ........................... 259
   8.6  Quantum Information Processing with Large-Spin
        Systems ............................................... 259
   8.7  Quantum Communication ................................. 260
        8.7.1  Andreev Entangler .............................. 261
        8.7.2  Andreev Entangler with Luttinger Liquid
               Leads .......................................... 264
        8.7.3  Entangled Electrons in a Fermi Sea ............. 265
        8.7.4  Noise of Entangled Electrons ................... 266
        8.7.5  Double-Dot with Normal Leads ................... 268
        8.7.6  Double-Dot with Superconducting Leads .......... 269
        8.7.7  Biexcitons in Coupled Quantum Dots as
               a Source of Entangled Photons and Electrons .... 270
   8.8  Conclusions ........................................... 272
9  Regulated Single Photons and Entangled Photons From
   a Quantum Dot Microcavity
   Yoshihisa Yamamoto, Matthew Pelton, Charles Santori,
   Glenn S. Solomon, Oliver Benson, Jelena Vuckovic, and
   Axel Scherer ............................................... 277
   9.1  Introduction .......................................... 277
   9.2  Single InAs/GaAs Quantum Dots ......................... 279
   9.3  Generation of Single Photons .......................... 285
   9.4  Coupling Single Quantum Dots to Micropost
        Microcavities ......................................... 286
   9.5  Theoretical Analysis of a Micropost DBR Cavity ........ 293
   9.6  Entangled Photon-Pairs from a Single Quantum Dot ...... 298
   9.7  Conclusions ........................................... 303

Index ......................................................... 307


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:52 2019. Размер: 20,114 bytes.
Посещение N 2059 c 25.01.2011