Binh L.N. Optical fiber communications systems: theory and practice with MATLAB and Simulink models (Boca Raton, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBinh L.N. Optical fiber communications systems: theory and practice with MATLAB and Simulink models. - Boca Raton: CRC Press/Taylor & Francis, 2010. - xxv, 534 p.: ill. - Incl. bibl. ref. - Ind.: p.521-534. - ISBN 978-1-4398-0620-3
 

Оглавление / Contents
 
Preface ...................................................... xvii
Author ........................................................ xxi
List of Abbreviations and Notations ......................... xxiii

1  Introduction ................................................. 1
   1.1  Historical Perspectives ................................. 1
   1.2  Digital Modulation for Advanced Optical Transmission
        Systems ................................................. 4
   1.3  Demodulation Techniques ................................. 7
   1.4  MATLAB® and Simulink® Platforms ......................... 8
   1.5  Organization of the Chapters in This Book ............... 8
2  Optical Waveguides: Geometrical and Lightwave-Guiding
   Properties .................................................. 11
   2.1  Introduction ........................................... 11
   2.2  Dielectric Slab Optical Waveguides ..................... 12
        2.2.1  Structure ....................................... 13
        2.2.2  Numerical Aperture .............................. 13
        2.2.3  Modes of the Symmetric Dielectric Slab
               Waveguides ...................................... 14
               2.2.3.1  Wave Equations ......................... 15
        2.2.4  Optical Guided Modes ............................ 16
               2.2.4.1  Even ТЕ Modes .......................... 17
               2.2.4.2  Odd ТЕ Modes ........................... 17
               2.2.4.3  Graphical Solutions for Guided ТЕ
                        Modes (Even and Odd) ................... 18
        2.2.5  Cutoff Properties ............................... 18
   2.3  Optical Fiber: General Properties ...................... 19
        2.3.1  Geometrical Structures and Index Profiles ....... 19
               2.3.1.1  Step-Index Profile ..................... 19
               2.3.1.2  Graded-Index Profile ................... 20
               2.3.1.3  Power Law-Index Profile ................ 21
               2.3.1.4  Gaussian-Index Profile ................. 21
        2.3.2  Fundamental Mode of Weakly Guiding Fibers ....... 21
               2.3.2.1  Solutions of the Wave Equation for
                        Step-Index Fiber ....................... 22
        2.3.3  Cutoff Properties ............................... 26
   2.4  Power Distribution ..................................... 27
        2.4.1  Approximation of Spot Size r0 of a Step-Index
               Fiber ........................................... 29
        2.4.2  Equivalent Step-Index Description ............... 29
               2.4.2.1  Definitions of ESI Parameters .......... 30
               2.4.2.2  Accuracy and Limits .................... 31
               2.4.2.3  Examples on ESI Techniques ............. 31
               2.4.2.4  General Method ......................... 32
   2.5  Nonlinear Optical Effects .............................. 33
        2.5.1  Nonlinear Phase Modulation Effects .............. 33
               2.5.1.1  Self-Phase Modulation .................. 33
               2.5.1.2  Cross-Phase Modulation ................. 34
        2.5.2  Stimulated Scattering Effects ................... 35
               2.5.2.1  Stimulated Brillouin Scattering ........ 36
               2.5.2.2  Stimulated Raman Scattering ............ 37
        2.5.3  Four-Wave Mixing ................................ 38
   2.6  Optical Fiber Manufacturing and Cabling ................ 39
   2.7  Concluding Remarks ..................................... 40
   2.8  Problems ............................................... 42
   Appendix: Technical Data of Single-Mode Optical Fibers ...... 44
   References .................................................. 57
3  Optical Fibers: Signal Attenuation and Dispersion ........... 59
   3.1  Introduction ........................................... 59
   3.2  Signal Attenuation in Optical Fibers ................... 60
        3.2.1  Intrinsic or Material Attenuation ............... 60
        3.2.2  Absorption ...................................... 61
        3.2.3  Rayleigh Scattering ............................. 61
        3.2.4  Waveguide Loss .................................. 61
        3.2.5  Bending Loss .................................... 61
        3.2.6  Microbending Loss ............................... 61
        3.2.7  Joint or Splice Loss ............................ 62
        3.2.8  Attenuation Coefficient ......................... 63
   3.3  Signal Distortion in Optical Fibers .................... 63
        3.3.1  Basics on Group Velocity ........................ 63
        3.3.2  Group Velocity Dispersion ....................... 65
               3.3.2.1  Material Dispersion .................... 65
               3.3.2.2  Waveguide Dispersion ................... 67
   3.4  Transfer Function of Single-Mode Fibers ................ 70
        3.4.1  Higher-Order Dispersion ......................... 70
        3.4.2  Transmission Bit Rate and Dispersion Factor ..... 72
        3.4.3  Polarization Mode Dispersion .................... 73
        3.4.4  Fiber Nonlinearity .............................. 76
   3.5  Advanced Optical Fibers: Dispersion Shifted,
        Dispersion Flattened, and Dispersion Compensated ....... 78
   3.6  Effects of Mode Hopping ................................ 79
   3.7  Numerical Solution: Split-Step Fourier Method .......... 80
        3.7.1  Symmetrical Split-Step Fourier Method ........... 80
        3.7.2  MATLAB® Program and MATLAB® and Simulink®
               Models of SSFM .................................. 81
               3.7.2.1  MATLAB® Program ........................ 81
               3.7.2.2  MATLAB® and Simulink® Models ........... 84
        3.7.3  Modeling of Polarization Mode Dispersion ........ 84
        3.7.4  Optimization of Symmetrical SSFM ................ 85
               3.7.4.1  Optimization of Computational Time ..... 85
               3.7.4.2  Mitigation of Windowing Effect and
                        Waveform Discontinuity ................. 86
   3.8  Concluding Remarks ..................................... 87
   3.9  Problems ............................................... 87

   Appendix 3.A.1: MATLAB® Program of the Design of Optical
        Fibers—A Solution to the Mini-Project Design ........... 91
   Appendix 3.A.2: Program Listings of the Design of Standard
        Single-Mode Fibers ..................................... 92
   Appendix 3.A.3: Program Listings of the Design of Nonzero
        Dispersion-Shifted Fibers .............................. 94
   Appendix 3.A.4: Program Listings of the Split-Step Fourier
        Method with SPM and Raman Gain Distribution ............ 96
   Appendix 3.A.5: Program Listings of the Initialization
        File ................................................... 98
   References ................................................. 100
4  Overview of Modeling Techniques for Optical Transmission
   Systems Using MATLAB® and Simulink® ........................ 103
   4.1  Overview .............................................. 103
   4.2  Optical Transmitter ................................... 105
        4.2.1  Background of External Optical Modulators ...... 106
        4.2.2  Optical Phase Modulator ........................ 106
        4.2.3  Optical Intensity Modulator .................... 107
               4.2.3.1  Single-Drive MZIM ..................... 107
               4.2.3.2  Dual-Drive MZIM ....................... 108
   4.3  Impairments of Optical Fiber .......................... 109
        4.3.1  Chromatic Dispersion ........................... 109
        4.3.2  Chromatic Dispersion as a Total of Material
               Dispersion and Waveguide Dispersion ............ 110
        4.3.3  Dispersion Length .............................. 112
        4.3.4  Polarization Mode Dispersion ................... 113
        4.3.5  Fiber Nonlinearity ............................. 114
   4.4  Modeling of Fiber Propagation ......................... 115
        4.4.1  Symmetrical Split-Step Fourier Method .......... 115
        4.4.2  Modeling of Polarization Mode Dispersion ....... 117
        4.4.3  Optimization of Symmetrical SSFM ............... 118
               4.4.3.1  Optimization of Computational Time .... 118
               4.4.3.2  Mitigation of Windowing Effect and
                        Waveform Discontinuity ................ 118
   4.5  Optical Amplifiers .................................... 118
        4.5.1  ASE Noise ...................................... 118
        4.5.2  Noise Figure ................................... 119
        4.5.3  Optical and Electrical Filters ................. 119
   4.6  Optical Receiver ...................................... 120
   4.7  Performance Evaluation ................................ 122
        4.7.1  Optical Signal-to-Noise Ratio .................. 123
        4.7.2  OSNR Penalty ................................... 123
        4.7.3  Eye Opening .................................... 123
        4.7.4  Conventional Evaluation Methods ................ 124
               4.7.4.1  Monte Carlo Method .................... 124
               4.7.4.2  Single Gaussian Statistical Method .... 125
        4.7.5  Novel Statistical Methods ...................... 126
               4.7.5.1  Multiple Gaussian Distributions
                        Method ................................ 126
               4.7.5.2  Generalized Pareto Distribution
                        Method ................................ 128
   4.8  MATLAB® and Simulink® Modeling Platforms .............. 130
   4.9  Concluding Remarks .................................... 137
   References ................................................. 138
5  Optical Modulation ......................................... 141
   5.1  Introduction .......................................... 141
   5.2  Direct Modulation ..................................... 142
        5.2.1  General Introduction ........................... 142
        5.2.2  Physics of Semiconductor Lasers ................ 143
               5.2.2.1  The Semiconductor p-n Junction for
                        Lasing Lightwaves ..................... 143
               5.2.2.2  Optical Gain Spectrum ................. 144
               5.2.2.3  Types of Semiconductor Lasers ......... 145
               5.2.2.4  Fabry-Perot Heterojunction
                        Semiconductor Laser ................... 145
               5.2.2.5  Distributed-Feedback Semiconductor
                        Laser ................................. 146
               5.2.2.6  Constricted Mesa Semiconductor
                        Laser ................................. 147
               5.2.2.7  Special Semiconductor Laser Source .... 148
               5.2.2.8  Single-Mode Optical Laser Rate
                        Equations ............................. 148
               5.2.2.9  Dynamic Response of Laser Source ...... 150
               5.2.2.10 Frequency Chirp ....................... 151
               5.2.2.11 Laser Noises .......................... 152
   5.3  External Modulation Using Optical Modulators .......... 156
        5.3.1  Phase Modulators ............................... 157
        5.3.2  Intensity Modulators ........................... 157
        5.3.3  Phasor Representation and Transfer
               Characteristics ................................ 158
   5.4  Bias Control .......................................... 160
        5.4.1  Chirp-Free Optical Modulators .................. 160
               5.4.1.1  Structures of Photonic Modulators ..... 161
        5.4.2  Typical Operational Parameters of Optical
               Intensity Modulators ........................... 163
        5.4.3  MATLAB® and Simulink® Models of External
               Optical Modulators ............................. 163
               5.4.3.1  Phase Modulation Model and Intensity
                        Modulation ............................ 163
               5.4.3.2  Dense Wavelength Division
                        Multiplexing Optical Multiplexers
                        and Modulators ........................ 164
   5.5  Concluding Remarks .................................... 167
   Appendix: MATLAB® Program for Solving the Laser Rate
        Equation .............................................. 167
   References ................................................. 169
6  Optical Transmitters for Advanced Modulation Format ........ 171
   6.1  Introduction .......................................... 171
   6.2  External Modulation and Advanced Modulation Formats ... 172
        6.2.1  Modulation Formats and Pulse Shaping ........... 177
               6.2.1.1  Generation ............................ 177
               6.2.1.2  Phasor Representation ................. 179
               6.2.1.3  Phasor Representation of CSRZ
                        Pulses ................................ 180
               6.2.1.4  Phasor Representation of RZ33
                        Pulses ................................ 181
        6.2.2  Differential Phase Shift Keying ................ 182
               6.2.2.1  Background ............................ 182
               6.2.2.2  Optical DPSK Transmitter .............. 183
   6.3  Generation of Modulation Formats ...................... 184
        6.3.1  Introductory Remarks ........................... 184
        6.3.2  Amplitude-Modulation ASK-NRZ and ASK-RZ ........ 185
               6.3.2.1  ASK-NRZ and ASK-RZ Pulse Shaping ...... 185
               6.3.2.2  Amplitude-Modulation Carrier-
                        Suppressed RZ Formats ................. 187
        6.3.3  Discrete Phase-Modulation NRZ Formats .......... 187
               6.3.3.1  Differential Phase Shift Keying ....... 187
               6.3.3.2  Differential Quadrature Phase Shift
                        Keying ................................ 188
               6.3.3.3  NRZ-DPSK .............................. 188
               6.3.3.4  RZ-DPSK ............................... 188
               6.3.3.5  Generation of M-Ary Amplitude
                        Differential Phase Shift Keying
                        Using One MZIM ........................ 189
               6.3.3.6  Continuous Phase Modulation PM-NRZ
                        Formats ............................... 191
               6.3.3.7  Linear and Nonlinear MSK .............. 192
        6.3.4  Photonic MSK Transmitter Using Two Cascaded
               Electro-Optic Phase Modulators ................. 195
               6.3.4.1  Configuration of Optical MSK
                        Transmitter Using Mach-Zehnder
                        Intensity Modulators: I-Q Approach .... 197
               6.3.4.2  Single Sideband Optical Modulators .... 198
               6.3.4.3  Optical RZ-MSK ........................ 198
        6.3.5  Multi-Carrier Multiplexing Optical
               Modulators ..................................... 199
        6.3.6  Spectra of Modulation Formats .................. 202
   6.4  Concluding Remarks .................................... 208
   6.5  Problems .............................................. 209
   Appendix: Structures of Mach-Zehnder Modulator ............. 214
   References ................................................. 215
7  Direct Detection Optical Receivers ......................... 219
   7.1  Introduction .......................................... 219
   7.2  Optical Receivers in Various Systems .................. 220
   7.3  Receiver Components ................................... 220
        7.3.1  Structure ...................................... 220
        7.3.2  Photodiodes .................................... 222
               7.3.2.1  p-i-n Photodiodes ..................... 222
               7.3.2.2  Avalanche Photodiodes ................. 222
               7.3.2.3  Quantum Efficiency and Responsivity ... 223
               7.3.2.4  High-Speed Photodetectors ............. 224
   7.4  Detection and Noises .................................. 224
        7.4.1  Linear Channel ................................. 225
        7.4.2  Data Recovery .................................. 225
        7.4.3  Noises in Photodetectors ....................... 225
        7.4.4  Receiver Noises ................................ 226
               7.4.4.1  Shot Noises ........................... 227
               7.4.4.2  Quantum Shot Noise .................... 228
               7.4.4.3  Thermal Noise ......................... 228
        7.4.5  Noise Calculations ............................. 228
   7.5  Performance Calculations for Binary Digital Optical
        Systems ............................................... 229
        7.5.1  Signals Received ............................... 230
        7.5.2  Probability Distribution ....................... 231
        7.5.3  Minimum Average Optical Received Power ......... 233
               7.5.3.1  Fundamental Limit: Direct Detection ... 235
               7.5.3.2  Equalized Signal Output ............... 235
               7.5.3.3  Photodiode Shot Noise ................. 236
        7.5.4  Total Output Noises and Pulse Shape
               Parameters ..................................... 238
               7.5.4.1  FET Front-End Optical Receiver ........ 239
               7.5.4.2  BJT Front-End Optical Receiver ........ 240
   7.6  HEMT-Matched Noise Network Preamplifier ............... 243
        7.6.1  Structure ...................................... 243
        7.6.2  Noise Theory and Equivalent Input Noise
               Current ........................................ 246
   7.7  Concluding Remarks .................................... 249
   7.8  Problems .............................................. 249
   Appendix: Noise Equations .................................. 251
   References ................................................. 253
8  Optical Coherent Detection ................................. 255
   8.1  Introduction .......................................... 255
   8.2  Coherent Receiver Components .......................... 256
   8.3  Coherent Detection .................................... 258
        8.3.1  Optical Heterodyne Detection ................... 260
               8.3.1.1  ASK Coherent System ................... 262
               8.3.1.2  PSK Coherent System ................... 264
               8.3.1.3  FSK Coherent System ................... 266
        8.3.2  Optical Homodyne Detection ..................... 266
               8.3.2.1  Detection and Optical PLL ............. 267
               8.3.2.2  Quantum Limit Detection ............... 269
               8.3.2.3  Linewidth Influences .................. 269
   8.4  Self-Coherent Detection and Electronic DSP ............ 274
   8.5  Digital Signal Processing Coherent Optical Receiver ... 275
        8.5.1  Theory of DSP-Assisted Coherent Detection ...... 275
        8.5.2  DSP-Based Phase Estimation and Correction of
               Phase Noise and Nonlinear Effects .............. 280
        8.5.3  DSP-Based Forward Phase Estimation Optical
               Coherent Receivers of QPSK Modulation Format ... 281
   8.6  Coherent Receiver Analysis ............................ 282
        8.6.1  Shot Noise-Limited Receiver Sensitivity ........ 286
        8.6.2  Receiver Sensitivity under Nonideal
               Conditions ..................................... 286
   8.7  MATLAB® and Simulink® Models .......................... 287
        8.7.1  Phase Detection ................................ 287
        8.7.2  Mach Zehnder Delay Interferometer .............. 287
        8.7.3  Receiver with Coupler .......................... 290
        8.7.4  π/2 Optical Hybrid Coupler ..................... 290
        8.7.5  Amplitude Detection ............................ 293
        8.7.6  Phase Detection ................................ 293
        8.7.7  Electronic Noise Model of Electronic
               Preamplifier ................................... 293
   8.8  Concluding Remarks .................................... 293
   8.9  Problems .............................................. 294
   Appendix: π/2 Hybrid Coupler Embedded MATLAB® Code ......... 295
   References ................................................. 295
9  Erbium-Doped Fiber Optical Amplifiers and Simulink®
   Models ..................................................... 299
   9.1  Introduction .......................................... 299
   9.2  Fundamental and Theoretical Issues of EDFAs ........... 300
        9.2.1  EDFA Configuration ............................. 300
        9.2.2  EDFA Operational Principles .................... 302
               9.2.2.1  Pump Wavelength and Absorption
                        Spectrum .............................. 302
               9.2.2.2  Pump Mechanism ........................ 303
        9.2.3  General Amplifier Noises and Gain in
               Transmission ................................... 305
               9.2.3.1  Amplifier Gain Modulation ............. 306
               9.2.3.2  EDFAs in Long-Haul Transmission
                        Systems ............................... 306
   9.3  EDFA Simulation Model ................................. 307
        9.3.1  Amplifier Parameters ........................... 307
        9.3.2  EDFAs Dynamic Model ............................ 309
        9.3.3  EDFAs Steady-State Modeling Principles ......... 311
        9.3.4  Population Inversion Factor .................... 311
        9.3.5  Amplifier Noises ............................... 312
               9.3.5.1  ASE Noise Model ....................... 312
               9.3.5.2  Other Noise Sources ................... 312
        9.3.6  Simulation Model ............................... 313
               9.3.6.1  Simulator Design Outline .............. 313
               9.3.6.2  Simulator Design Process .............. 314
               9.3.6.3  Simulator Requirement ................. 314
               9.3.6.4  Simulator Design Assumptions .......... 315
               9.3.6.5  Further Assumptions ................... 316
        9.3.7  EDFA Simulator ................................. 317
               9.3.7.1  Using the EDFA Simulator .............. 318
               9.3.7.2  Signal Data Stream Modeling ........... 318
               9.3.7.3  Pump Source ........................... 318
               9.3.7.4  Pumping Wavelength .................... 321
               9.3.7.5  Pump Modulation ....................... 322
               9.3.7.6  EDF Modeling .......................... 322
               9.3.7.7  EDFA's Dynamic Gain Model ............. 323
               9.3.7.8  EDFA's Steady-State Gain Model ........ 323
               9.3.7.9  Population Inversion Factor
                        Modeling .............................. 324
               9.3.7.10 Amplifier Noise Modeling .............. 325
               9.3.7.11 Simulink® EDFA Simulator: Execution
                        Procedures ............................ 327
               9.3.7.12 Amplification in the L Band ........... 330
        9.3.8  Multichannel Operation of the EDFA ............. 333
               9.3.8.1  ASE Measurement ....................... 334
               9.3.8.2  Pump Wavelength Testing ............... 334
               9.3.8.3  Gain Pump Modulation Effect ........... 335
               9.3.8.4  Samples of the Simulink® Simulator .... 336
   9.4  Concluding Remarks .................................... 337
   References ................................................. 337
10 MATLAB® and Simulink® Modeling of Raman Amplification and
   Integration in Fiber Transmission Systems .................. 339
   10.1 Introduction .......................................... 339
   10.2 ROA versus Erbium-Doped Fiber Amplifiers .............. 341
   10.3 Raman Amplification ................................... 342
        10.3.1 Principles ..................................... 342
        10.3.2 Raman Amplification Coupled Equations .......... 343
        10.3.3 Raman and Fiber Propagation under Linear and
               Nonlinear Fiber Dispersion ..................... 345
               10.3.3.1 Propagation Equation .................. 345
               10.3.3.2 Standard Single-Mode Fiber and DCF
                        as Raman Fibers ....................... 346
               10.3.3.3 Noise Figure .......................... 350
               10.3.3.4 Dispersion ............................ 353
   10.4 Nonlinear Raman Gain/Scattering Schrödinger
        Equation .............................................. 353
        10.4.1 Fiber Nonlinearities ........................... 354
        10.4.2 Dispersion ..................................... 355
        10.4.3 Split-Step Fourier Method ...................... 355
        10.4.4 Gaussian Pulses, Eye Diagrams, and Bit Error
               Rate ........................................... 356
   10.5 Raman Amplification and Gaussian Pulse Propagation .... 356
        10.5.1 Fiber Profiles ................................. 356
        10.5.2 Gaussian Pulse Propagation ..................... 358
               10.5.2.1 Bidirectional Pumping Case ............ 358
               10.5.2.2 Forward-Pumping Case .................. 359
               10.5.2.3 Backward-Pumping Case ................. 360
               10.5.2.4 Back-to-Back Performance .............. 360
               10.5.2.5 Propagation under No Amplification .... 361
               10.5.2.6 Propagation under Fiber Raman
                        Amplification ......................... 361
   10.6 Optically Amplified Transmission ...................... 362
        10.6.1 EDFA Amplification and Distributed Raman
               Amplification over 99 km Fiber (1km
               Mismatch) ...................................... 362
               10.6.1.1 EDFA .................................. 362
               10.6.1.2 Distributed Raman Amplification ....... 362
        10.6.2 Hybrid Amplification ........................... 364
        10.6.3 Long-Haul Optically Amplified Transmission ..... 366
               10.6.3.1 Eye Diagram and BER Evaluation under
                        Noise Loading Effects ................. 366
               10.6.3.2 Launched Power versus BER ............. 367
               10.6.3.3 Dispersion Tolerance .................. 372
               10.6.3.4 Remarks ............................... 374
   10.7 Concluding Remarks .................................... 375
   10.8 Problems .............................................. 376
   Appendix: Raman Amplification and Split-Step Fourier
        Method—MATLAB® Program ................................ 377
   References ................................................. 379
11 Design of Optical Communication Systems and Simulink®
   Models ..................................................... 381
   11.1 Introduction .......................................... 381
   11.2 Long-Haul Optical Transmission Systems ................ 383
        11.2.1 Intensity-Modulation Direct-Detection
               Systems ........................................ 383
        11.2.2 Loss-Limited Optical Communication Systems ..... 385
        11.2.3 Dispersion-Limited Optical Communication
               Systems ........................................ 385
        11.2.4 System Preliminary Design ...................... 386
               11.2.4.1 Single-Span Optical Transmission
                        Systems ............................... 386
               11.2.4.2 Power Budget .......................... 386
               11.2.4.3 Rise-Time/Dispersion Budget ........... 387
               11.2.4.4 Multi-Span Optical Transmission
                        Systems ............................... 389
               11.2.4.5 Maximum Transmission Distance of
                        Cascaded Optically Amplified Multi-
                        Span Systems .......................... 390
        11.2.5 Gaussian Approximation ......................... 392
               11.2.5.1 Link Budget Measurement ............... 393
               11.2.5.2 System Margin Measurement ............. 394
        11.2.6 Some Notes on the Design of Optical
               Transmission Systems ........................... 397
               11.2.6.1 Allocations of Wavelength Channels .... 397
               11.2.6.2 Multiwavelength MATLAB® and
                        Simulink® Models ...................... 400
               11.2.6.3 Link Design Process ................... 400
               11.2.6.4 Link Budget Considerations ............ 402
   11.3 Link Budget Calculations under Linear and Nonlinear
        Effects ............................................... 403
        11.3.1 Budget ......................................... 404
        11.3.2 System Impairments ............................. 404
               11.3.2.1 Power and Time Eyes ................... 405
               11.3.2.2 Dispersion Tolerance due to
                        Wavelength Channels and Nonlinear
                        Effects ............................... 406
               11.3.2.3 Dependence on Wavelength Channels
                        and Launched Power .................... 406
               11.3.2.4 Budget ................................ 406
        11.3.3 Engineering an OADM Transmission Link .......... 409
   11.4 Problems .............................................. 410
12 Simulink® Models of Optically Amplified Digital
   Transmission Systems ....................................... 415
   12.1 ASK Modulation Formats Transmission Models ............ 415
        12.1.1 Introductory Remarks ........................... 416
        12.1.2 Components for Advanced Optical Communication
               System ......................................... 417
               12.1.2.1 Optical Source ........................ 418
               12.1.2.2 Optical Modulators .................... 419
               12.1.2.3 Mach-Zehnder Intensity Modulator ...... 419
        12.1.3 Transmission Loss and Dispersion Revisited ..... 421
        12.1.4 Nonlinear Effects .............................. 422
        12.1.5 Signal Propagation Model ....................... 422
               12.1.5.1 Nonlinear Schrödinger Propagation
                        Equation .............................. 422
        12.1.6 Low-Pass Equivalent Model: Linear Operating
               Region ......................................... 423
        12.1.7 Modulation Formats ............................. 423
        12.1.8 NRZ or NRZ-ASK ................................. 424
        12.1.9 RZ or RZ-ASK ................................... 424
   12.2 Return-to-Zero Optical Pulses ......................... 427
        12.2.1 Generation ..................................... 427
        12.2.2 Phasor Representation .......................... 430
        12.2.3 Phasor Representation of CSRZ Pulses ........... 430
        12.2.4 Phasor Representation of RZ33 Pulses ........... 432
   12.3 Differential Phase Shift Keying ....................... 433
        12.3.1 NRZ-DPSK ....................................... 434
        12.3.2 RZ-DPSK ........................................ 434
        12.3.3 Receiver ....................................... 435
   12.4 Simulink® Models ...................................... 436
        12.4.1 Bernoulli Binary Generator ..................... 437
        12.4.2 DFB Laser ...................................... 438
        12.4.3 Mach-Zehnder Interferometric Modulator ......... 438
               12.4.3.1 Pulse Carver .......................... 439
               12.4.3.2 Data Modulator ........................ 442
               12.4.3.3 Differential Data Encoder ............. 443
        12.4.4 Back-to-Back Receiver .......................... 443
               12.4.4.1 Eye Diagram ........................... 446
        12.4.5 Signal Propagation ............................. 446
        12.4.6 Bit Error Rate ................................. 447
   12.5 DQPSK Modulation Formats Transmission Models .......... 449
        12.5.1 DQPSK Optical System Components ................ 450
               12.5.1.1 DQPSK Transmitter ..................... 450
               12.5.1.2 DQPSK Receiver ........................ 451
        12.5.2 MATLAB® and Simulink® Simulators ............... 454
   12.6 Spectral Characteristics of Advanced Modulation
        Formats ............................................... 454
   12.7 Partial Responses Duo-Binary Transmission Model ....... 459
        12.7.1 Remarks ........................................ 459
        12.7.2 The DBM Formatter .............................. 460
        12.7.3 40Gb/s DB Optical Fiber Transmission Systems ... 461
        12.7.4 Electro-Optic Duo-Binary Transmitter ........... 463
               12.7.4.1 The Duo-Binary Encoder ................ 463
               12.7.4.2 The External Modulator ................ 465
               12.7.4.3 Duo-Binary Transmitters and
                        Precoder .............................. 466
               12.7.4.4 Alternative Phase DB Transmitter ...... 468
   12.8 MSK Transmission Model ................................ 470
        12.8.1 Introduction ................................... 470
        12.8.2 Generation of Optical MSK-Modulated Signals .... 473
               12.8.2.1 Optical MSK Transmitter Using Two
                        Cascaded Electro-Optic Phase
                        Modulators ............................ 473
               12.8.2.2 Possibility to Generate Optical
                        M-Ary CPFSK Format .................... 474
               12.8.2.3 Detection of M-Ary CPFSK Modulated
                        Optical Signal ........................ 474
               12.8.2.4 Optical MSK Transmitter Using
                        Parallel Mach-Zehnder Intensity
                        Modulators (I-Q Approach) ............. 475
        12.8.3 Optical Binary-Amplitude MSK Format ............ 480
               12.8.3.1 Generation ............................ 480
               12.8.3.2 Detection ............................. 484
        12.8.4 Typical Simulation Results ..................... 484
               12.8.4.1 Transmission Performance of Linear
                        and Nonlinear Optical MSK Systems ..... 484
   12.9 Star-QAM Transmission Systems for lOOGb/s Capacity .... 488
        12.9.1 Introductory Remarks ........................... 489
        12.9.2 Design of 16-QAM Signal Constellation .......... 490
               12.9.2.1 Star 16-QAM ........................... 490
               12.9.2.2 8-DPSK_2-ASK 16-Star-QAM .............. 492
               12.9.2.3 Receiver Sensitivity and Dispersion
                        Tolerance ............................. 495
               12.9.2.4 Long-Haul Transmission ................ 496
   12.10 Concluding Remarks ................................... 499

Appendix 12.A: Simulink® and Simulation Guidelines ............ 500

   12.A.1 MATLAB® and Simulink® ............................... 500
   12.A.2 Guidelines for Using Simulink® Models ............... 501
   12.A.3 MATLAB® Files ....................................... 505
          12.A.3.1 Initialization File ........................ 505
   References ................................................. 512

Appendix: A Short Glossary of Terms in Optical Fiber
   Communications ............................................. 515

Index ......................................................... 521


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:34 2019. Размер: 41,193 bytes.
Посещение N 3279 c 13.09.2011