Raman spectroscopy in graphene related systems (Weinheim, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRaman spectroscopy in graphene related systems / A.Jorio, R.Saito, G.Dresselhaus, M.S.Dresselhaus. - Weinheim: Wiley-VCH, 2011. - xiv, 354 p.: ill. (some col.) - Ref.: p.335-349. - Ind.: p.351-354. - ISBN 978-3-527-40811-5
 

Оглавление / Contents
 
Preface ...................................................... XIII

Part One. Materials Science and Raman Spectroscopy Background ... 1

1  The sp2 Nanocarbons: Prototypes for Nanoscience and
   Nanotechnology ............................................... 3
   1.1  Definition of sp2 Nanocarbon Systems .................... 3
   1.2  Short Survey from Discovery to Applications ............. 5
   1.3  Why sp2 Nanocarbons Are Prototypes for Nanoscience and
        Nanotechnology ......................................... 10
   1.4  Raman Spectroscopy Applied to sp2 Nanocarbons .......... 11
2  Electrons in sp2 Nanocarbons ................................ 17
   2.1  Basic Concepts: from the Electronic Levels in Atoms
        and Molecules to Solids ................................ 18
        2.1.1  The One-Electron System and the Schrodinger
               Equation ........................................ 18
        2.1.2  The Schrodinger Equation for the Hydrogen
               Molecule ........................................ 20
        2.1.3  Many-Electron Systems: the NO Molecule .......... 21
   2.1  A  Hybridization: the Acetylene C2H2 Molecule .......... 23
        2.1.5  Basic Concepts for the Electronic Structure of
               Crystals ........................................ 24
   2.2  Electrons in Graphene: the Mother of sp2 Nanocarbons ... 27
        2.2.1  Crystal Structure of Monolayer Graphene ......... 27
        2.2.2  The Π-Bands of Graphene ......................... 28
        2.2.3  The σ-Bands of Graphene ......................... 31
        2.2.4  N-Layer Graphene Systems ........................ 33
        2.2.5  Nanoribbon Structure ............................ 35
   2.3  Electrons in Single-Wall Carbon Nanotubes .............. 37
        2.3.1  Nanotube Structure .............................. 38
        2.3.2  Zone-Folding of Energy Dispersion Relations ..... 40
        2.3.3  Density of States ............................... 44
        2.3.4  Importance of the Electronic Structure and 
               Excitation Laser Energy to the Raman Spectra
               of SWNTs ........................................ 47
   2.4  Beyond the Simple Tight-Binding Approximation and 
        Zone-Folding Procedure ................................. 48
3  Vibrations in sp Nanocarbons ................................ 53
   3.1  Basic Concepts: from the Vibrational Levels in 
        Molecules to Solids
        3.1.1  The Harmonic Oscillator ......................... 55
        3.1.2  Normal Vibrational Modes from Molecules to 
               a Periodic Lattice .............................. 56
        3.1.3  The Force Constant Model ........................ 59
   3.2  Phonons in Graphene .................................... 61
   3.3  Phonons in Nanoribbons ................................. 65
   3.4  Phonons in Single-Wall Carbon Nanotubes ................ 66
        3.4.1  The Zone-Folding Picture ........................ 66
        3.4.2  Beyond the Zone-Folding Picture ................. 67
   3.5  Beyond the Force Constant Model and Zone-Folding
        Procedure .............................................. 69
4  Raman Spectroscopy: from Graphite to sp2 Nanocarbons ........ 73
   4.1  Light Absorption ....................................... 73
   4.2  Other Photophysical Phenomena .......................... 75
   4.3  Raman Scattering Effect ................................ 78
        4.3.1  Light-Matter Interaction and Polarizability:
               Classical Description of Raman Effect ........... 79
        4.3.2  Characteristics of the Raman Effect ............. 81
               4.3.2.1  Stokes and Anti-Stokes Raman
                        Processes .............................. 81
               4.3.2.2  The Raman Spectrum ..................... 82
               4.3.2.3  Raman Lineshape and Raman Spectral
                        Linewidth Гq ........................... 82
               4.3.2.4  Energy Units: cm-1 ..................... 84
               4.3.2.5  Resonance Raman Scattering and
                        Resonance Window Linewidth γr ......... 85
               4.3.2.6  Momentum Conservation and
                        Backscattering Configuration of
                        Light ................................. 86
               4.3.2.7  First and Higher-Order Raman
                        Processes ............................. 86
               4.3.2.8  Coherence ............................. 87
   4.4  General Overview of the sp2 Carbon Raman Spectra ...... 88
        4.4.1  Graphite ....................................... 88
        4.4.2  Carbon Nanotubes - Historical Background ....... 92
        4.4.3  Graphene ....................................... 96
5  Quantum Description of Raman Scattering ................... 103
   5.1  The Fermi Golden Rule ................................ 103
   5.2  The Quantum Description of Raman Spectroscopy ........ 108
   5.3  Feynman Diagrams for Light Scattering ................ 111
   5.4  Interaction Hamiltonians ............................. 114
        5.4.1  Electron-Radiation Interaction ................ 114
        5.4.2  Electron-Phonon Interaction ................... 115
   5.5  Absolute Raman Intensity and the Elaser Dependence ... 116
6  Symmetry Aspects and Selection Rules: Croup Theory ........ 121
   6.1  The Basic Concepts of Group Theory ................... 122
        6.1.1  Definition of a Group ......................... 122
        6.1.2  Representations ............................... 123
        6.1.3  Irreducible and Reducible Representations ..... 124
        6.1.1  The Character Table ........................... 126
        6.1.5  Products and Orthogonality .................... 127
        6.1.6  Other Basis Functions ......................... 128
        6.1.7  Finding the IRs for Normal Modes
               Vibrations .................................... 128
        6.1.8  Selection Rules ............................... 130
   6.2  First-Order Raman Scattering Selection Rules ......... 130
   6.3  Symmetry Aspects of Graphene Systems ................. 132
        6.3.1  Group of the Wave Vector ...................... 132
        6.3.2  Lattice Vibrations and Π Electrons ............ 135
        6.3.3  Selection Rules for the Electron-Photon
               Interaction ................................... 138
        6.3.4  Selection Rules for First-Order Raman
               Scattering .................................... 140
        6.3.5  Electron Scattering by q ≠ 0 Phonons .......... 141
        6.3.6  Notation Conversion from Space Group to
               Point Group Irreducible Representations ....... 141
   6.4  Symmetry Aspects of Carbon Nanotubes ................. 142
        6.4.1  Compound Operations and Tube Chirality ........ 143
        6.4.2  Symmetries for Carbon Nanotubes ............... 145
        6.4.3  Electrons in Carbon Nanotubes ................. 151
        6.4.4  Phonons in Carbon Nanotubes ................... 151
        6.4.5  Selection Rules for First-Order Raman
               Scattering .................................... 152
        6.4.6  Insights into Selection Rules from Matrix
               Elements and Zone Folding ..................... 153

Part Two. Detailed Analysis of Raman Spectroscopy in
          Graphene Related Systems ........................... 159

7  The G-band and Time-Independent Perturbations ............. 161
   7.1  G-band in Graphene: Double Degeneracy and Strain ..... 162
        7.1.1  Strain Dependence of the G-band ............... 163
        7.1.2  Application of Strain to Graphene ............. 165
   7.2  The G-band in Nanotubes: Curvature Effects on the
        Totally Symmetric Phonons ............................ 165
        7.2.1  The Eigenvectors .............................. 166
        7.2.2  Frequency Dependence on Tube Diameter ......... 168
   7.3  The Six G-band Phonons: Confinement Effect ........... 169
        7.3.1  Mode Symmetries and Selection Rules in
               Carbon Nanotubes .............................. 169
        7.3.2  Experimental Observation Through
               Polarization Analysis ......................... 170
        7.3.3  The Diameter Dependence of ωG ................. 172
   7.4  Application of Strain to Nanotubes ................... 174
   7.5  Summary .............................................. 175
8  The G-band and the Time-Dependent Perturbations ........... 179
   8.1  Adiabatic and Nonadiabatic Approximations ............ 179
   8.2  Use of Perturbation Theory for the Phonon Frequency
        Shift ................................................ 181
        8.2.1  The Effect of Temperature ..................... 181
        8.2.2  The Phonon Frequency Renormalization .......... 183
   8.3  Experimental Evidence of the Kohn Anomaly on the
        G-band of Graphene ................................... 186
        8.3.1  Effect of Gate Doping on the G-band of
               Single-Layer Graphene ......................... 186
        8.3.2  Effect of Gate Doping on the G-band of
               Double-Layer Graphene ......................... 286
   8.4  Effect of the Kohn Anomaly on the G-band of 
        M-SWNTs vs. S-SWNTs .................................. 187
        8.4.1  The Electron-Phonon Matrix Element: Peierls-
               Like Distortion ............................... 188
        8.4.2  Effect of Gate Doping on the G-band of 
               SWNTs: Theory ................................. 191
        8.4.3  Comparison with Experiments ................... 194
        8.4.4  Chemical Doping of SWNTs ...................... 196
   8.5  Summary .............................................. 197
9  Resonance Raman Scattering: Experimental Observations of
   the Radial Breathing Mode ................................. 199
   9.1  The Diameter and Chiral Angle Dependence of the RBM
        Frequency ............................................ 200
        9.1.1  Diameter Dependence: Elasticity Theory ........ 200
        9.1.2  Environmental Effects on the RBM Frequency .... 202
        9.1.3  Frequency Shifts in Double-Wall Carbon
               Nanotubes ..................................... 206
   9.1  A  Linewidths ........................................ 208
        9.1.5  Beyond Elasticity Theory: Chiral Angle
               Dependence .................................... 209
   9.2  Intensity and the Resonance Raman Effect: Isolated
        SWNTs ................................................ 211
        9.2.1  The Resonance Window .......................... 211
        9.2.2  Stokes and Anti-Stokes Spectra with One
               Laser Line .................................... 214
        9.2.3  Dependence on Light Polarization .............. 215
   9.3  Intensity and the Resonance Raman Effect: SWNT
        Bundles .............................................. 216
        9.3.1  The Spectral Fitting Procedure for an
               Ensemble of Large Diameter Tubes .............. 217
        9.3.2  The Experimental Kataura Plot ................. 218
   9.4  Summary .............................................. 220
10 Theory of Excitons in Carbon Nanotubes .................... 223
   10.1 The Extended Tight-Binding Method: σ-Π
        Hybridization ........................................ 224
   10.2 Overview on the Excitonic Effect ..................... 225
        10.2.1 The Hydrogenic Exciton ........................ 226
        10.2.2 The Exciton Wave Vector ....................... 227
        10.2.3 The Exciton Spin .............................. 228
        10.2.4 Localization of Wavefunctions in Real Space ... 229
        10.2.5 Uniqueness of the Exciton in Graphite, SWNTs
               and C60 ....................................... 230
   10.3  Exciton Symmetry .................................... 231
        10.3.1  The Symmetry of Excitons ..................... 231
        10.3.2  Selection Rules for Optical Absorption ....... 234
   10.4 Exciton Calculations for Carbon Nanotubes ............ 234
        10.4.1 Bethe-Salpeter Equation ....................... 235
        10.4.2 Exciton Energy Dispersion ..................... 236
        10.4.3 Exciton Wavefunctions ......................... 237
        10.4.4 Family Patterns in Exciton Photophysics ....... 241
   10.5 Exciton Size Effect: the Importance of Dielectric
        Screening ............................................ 243
        10.5.1 Coulomb Interaction by the 2s and σ
               Electrons ..................................... 243
        10.5.2 The Effect of the Environmental Dielectric
               Constant kenv Term ............................ 245
        10.5.3 Further Theoretical Considerations about
               Screening ..................................... 246
   10.6 Summary .............................................. 248
11 Tight-Binding Method for Calculating Raman Spectra ........ 251
   11.1 General Considerations for Calculating Raman
        Spectra .............................................. 252
   11.2 The (n, m) Dependence of the RBM Intensity:
        Experiment ........................................... 253
   11.3 Simple Tight-Binding Calculation for the Electronic
        Structure ............................................ 255
   11.4 Extended Tight-Binding Calculation for Electronic
        Structures ........................................... 258
   11.5 Tight-Binding Calculation for Phonons ................ 259
        11.5.1 Bond Polarization Theory for the Raman
               Spectra ....................................... 260
        11.5.2 Non-Linear Fitting of Force Constant Sets ..... 261
   11.6 Calculation of the Electron-Photon Matrix Element .... 263
        11.6.1 Electric Dipole Vector for Graphene ........... 264
   11.7 Calculation of the Electron-Phonon Interaction ....... 266
   11.8 Extension to Exciton States .......................... 269
        11.8.1 Exciton-Photon Matrix Element ................. 270
        11.8.2 The Exciton-Phonon Interaction ................ 271
   11.9 Matrix Elements for the Resonance Raman Process ...... 272
   11.10 Calculating the Resonance Window Width .............. 273
   11.11 Summary ............................................. 274
12 Dispersive G'-band and Higher-Order Processes: the
   Double Resonance Process .................................. 277
   12.1 General Aspects of Higher-Order Raman Processes ...... 278
   12.2 The Double Resonance Process in Graphene ............. 280
        12.2.1 The Double Resonance Process .................. 280
        12.2.2 The Dependence of the ωG' Frequency on the
               Excitation Laser Energy ....................... 284
        12.2.3 The Dependence of the G'-band on the Number
               of Graphene Layers ............................ 286
        12.2.4 Characterization of the Graphene Stacking
               Order by the G' Spectra ....................... 288
   12.3 Generalizing the Double Resonance Process to Other
        Raman Modes .......................................... 289
   12.4 The Double Resonance Process in Carbon Nanotubes ..... 290
        12.4.1 The G'-band in SWNTs Bundles .................. 292
        12.4.2 The (n, m) Dependence of the G'-band .......... 294
   12.5 Summary .............................................. 296
13  Disorder Effects in the Raman Spectra of sp2 Carbons ..... 299
   13.1 Quantum Modeling of the Elastic Scattering Event ..... 301
   13.2 The Frequency of the Defect-Induced Peaks: the
        Double Resonance Process ............................. 304
   13.3 Quantifying Disorder in Graphene and Nanographite
        from Raman Intensity Analysis ........................ 307
        13.3.1 Zero-Dimensional Defects Induced by Ion
               Bombardment ................................... 308
        13.3.2 The Local Activation Model .................... 310
        13.3.3 One-Dimensional Defects Represented by the
               Boundaries of Nanocrystallites ................ 313
        13.3.4 Absolute Raman Cross-Section .................. 317
   13.4 Defect-Induced Selection Rules: Dependence on Edge
        Atomic Structure ..................................... 317
   13.5 Specificities of Disorder in the Raman Spectra of
        Carbon Nanotubes ..................................... 320
   13.6 Local Effects Revealed by Near-Field Measurements .... 321
   13.7 Summary .............................................. 323
14 Summary of Raman Spectroscopy on sp2 Nanocarbons .......... 327
   14.1 Mode Assignments, Electron, and Phonon Dispersions ... 327
   14.2 The G-band ........................................... 328
   14.3 The Radial Breathing Mode (RBM) ...................... 330
   14.4 G'-band .............................................. 332
   14.5 D-band ............................................... 333
   14.6 Perspectives ......................................... 334
   References ................................................ 335

Index ........................................................ 351


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:42 2019. Размер: 21,544 bytes.
Посещение N 1540 c 11.10.2011