Heinzel T. Mesoscopic electronics in solid state nanostructures (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHeinzel T. Mesoscopic electronics in solid state nanostructures / T.Heinzel; with the collaboration of I.Zozoulenko. - 3rd completely rev. and enl. ed. - Weinheim: Wiley-VCH, 2010. - xv, 439 p.: ill. - Ref.: p.425-434. - Ind.: p.436-439. - ISBN 978-3-527-40932-7
 

Оглавление / Contents
 
Preface ...................................................... XIII
1  Introduction ................................................. 1
   1.1  Preliminary remarks ..................................... 1
   1.2  Mesoscopic transport .................................... 2
        1.2.1  Ballistic Transport .............................. 3
        1.2.2  The Quantum Hall Effect and Shubnikov-de Haas
               Oscillations ..................................... 5
        1.2.3  Size Quantization ................................ 7
        1.2.4  Phase Coherence .................................. 8
        1.2.5  Single-Electron Tunneling and Quantum Dots ....... 9
        1.2.6  Superlattices ................................... 10
        1.2.7  Spintronics ..................................... 11
        1.2.8  Samples, Experimental Techniques, and
               Technological Relevance ......................... 11
        1.2.9  Modeling ........................................ 15
        1.2.10 What is not in this book ........................ 15

2  An update of solid state physics ............................ 17
   2.1  Crystal structures ..................................... 18
   2.2  Electronic energy bands ................................ 20
   2.3  Occupation of energy bands ............................. 34
        2.3.1  The electronic density of states ................ 34
        2.3.2  Occupation probability and chemical potential ... 36
        2.3.3  Transition between dimensions: quasi-n-
               dimensional systems ............................. 37
        2.3.4  Intrinsic carrier concentration ................. 39
        2.3.5  Bloch waves and localized electrons ............. 40
   2.4  Envelope wave functions ................................ 41
   2.5  Doping ................................................. 44
   2.6  Diffusive transport and the Boltzmann equation ......... 49
        2.6.1  The Boltzmann equation .......................... 50
        2.6.2  The conductance predicted by the simplified
               Boltzmann equation .............................. 53
        2.6.3  The magneto-resistivity tensor .................. 54
        2.6.4  Diffusion currents .............................. 58
   2.7  Scattering mechanisms .................................. 59
   2.8  Screening .............................................. 62

3  Surfaces, interfaces, and layered devices ................... 69
   3.1  Electronic surface states .............................. 71
        3.1.1  Surface States in One Dimension ................. 71
        3.1.2  Surfaces of Three-Dimensional Crystals .......... 77
        3.1.3  Band Bending and Fermi Level Pinning ............ 79
   3.2  Semiconductor-metal interfaces ......................... 80
        3.2.1  Band Alignment and Schottky Barriers ............ 81
               3.2.1.1  The Schottky model ..................... 83
               3.2.1.2  The Schottky diode ..................... 84
        3.2.2  Ohmic contacts .................................. 85
   3.3  Semiconductor heterointerfaces ......................... 86
   3.4  Field effect transistors and quantum wells ............. 88
        3.4.1  The Silicon Metal-Oxide-Semiconductor Field
               Effect Transistor
               3.4.1.1  The MOSFET and digital electronics ..... 92
        3.4.2  The Ga[Al]As High Electron Mobility
               Transistor ...................................... 95
        3.4.3  Other Types of Layered Devices .................. 97
               3.4.3.1  The AlSb-InAs-AlSb quantum well ........ 99
               3.4.3.2  Hole gas in Si-Si1-xGex-Si quantum
                        wells ................................. 100
               3.4.3.3  Hole gases in in Ga[Al]As quantum
                        wells ................................. 100
               3.4.3.4  Organic FETs .......................... 107
        3.4.4  Quantum Confined Carriers in Comparison to
               Bulk Carriers .................................. 102

4  Experimental techniques .................................... 107
   4.1  Sample preparation .................................... 107
        4.1.1  Single Crystal Growth .......................... 108
        4.1.2  Growth of Layered Structures ................... 110
               4.1.2.1  Metal organic chemical vapor
                        deposition (MOCVD) .................... 111
               4.1.2.2  Molecular beam epitaxy (MBE) .......... 111
        4.1.3  Lateral Patterning ............................. 116
               4.1.3.1  Defining patterns in resists .......... 117
               4.1.3.2  Direct writing methods ................ 120
               4.1.3.3  Etching ............................... 127
        4.1.4  Metallization .................................. 122
        4.1.5  Bonding ........................................ 124
   4.2  Elements of cryogenics ................................ 125
        4.2.1  Properties of Liquid Helium .................... 126
               4.2.1.1  Some properties of pure 4He ........... 126
               4.2.1.2  Some properties of pure 3He ........... 129
               4.2.1.3  The 3He/4He mixture ................... 130
        4.2.2  Helium Cryostats ............................... 132
               4.2.2.1  4He cryostats ......................... 132
               4.2.2.2  3He cryostats ......................... 133
               4.2.2.3  3He/4He dilution refrigerators ........ 134
   4.3  Electronic measurements on nanostructures ............. 136
        4.3.1  Sample Holders ................................. 136
        4.3.2  Application and Detection of Electronic
               Signals ........................................ 137
               4.3.2.1  General considerations ................ 137
               4.3.2.2  Voltage and current sources ........... 138
               4.3.2.3  Signal detectors ...................... 139
               4.3.2.4  Some important measurement setups ..... 142

5  Important quantities in mesoscopic transport ............... 147
   5.1  Fermi wavelength ...................................... 147
   5.2  Elastic scattering times and lengths .................. 147
   5.3  Diffusion constant .................................... 148
   5.4  Dephasing time and phase coherence length ............. 152
   5.5  Electron-electron scattering time ..................... 152
   5.6  Thermal length ........................................ 152
   5.7  Localization length ................................... 153
   5.8  Interaction parameter (or gas parameter) .............. 153
   5.9  Magnetic length and magnetic time ..................... 153

6  Magneto-transport properties of quantum films .............. 155
   6.1  Landau quantization ................................... 156
        6.1.1  Two-dimensional electron gases in
               perpendicular magnetic fields .................. 156
        6.1.2  The chemical potential in strong magnetic
               fields ......................................... 159
   6.2  The quantum Hall effect ............................... 162
        6.2.1  Phenomenology of the QHE ....................... 162
        6.2.2  Toward an explanation of the integer quantum
               Hall effect .................................... 164
        6.2.3  The quantum Hall effect and three dimensions ... 168
   6.3  Elementary analysis of Shubnikov-de Haas
        oscillations .......................................... 170
   6.4  Some examples of magneto-transport experiments ........ 172
        6.4.1  Quasi-two-dimensional electron gases ........... 173
        6.4.2  Mapping of the probability density ............. 175
        6.4.3  Displacement of the quantum Hall plateaux ...... 176
        6.4.4  In-plane magnetic fields ....................... 177
   6.5  The QHE in graphene ................................... 182

7  Quantum wires and ballistic transport ...................... 187
   7.1  Diffusive quantum wires ............................... 189
        7.1.1  Basic Properties ............................... 189
        7.1.2  Boundary Scattering ............................ 192
   7.2  Ballistic quantum wires ............................... 193
        7.2.1  Phenomenology .................................. 193
        7.2.2  Conductance Quantization in QPCs ............... 194
        7.2.3  Magnetic Field Effects ......................... 202
        7.2.4  The "0.7 Structure" ............................ 205
        7.2.5  Four-Probe Measurements on Ballistic Quantum
               Wires .......................................... 205
   7.3  The Landauer-Büttiker formalism ....................... 207
        7.3.1  Edge States .................................... 208
        7.3.2  Edge Channels .................................. 272
   7.4  Further examples of quantum wires ..................... 274
        7.4.1  Conductance Quantization in Conventional
               Metals ......................................... 274
        7.4.2  Molecular Wires ................................ 276
               7.4.2.1  Carbon nanotubes ...................... 276
   7.5  Quantum point contact circuits ........................ 279
        7.5.1  Non-Ohmic Behavior of QPCs in Series ........... 279
        7.5.2  QPCs in Parallel ............................... 222
   7.6  Semiclassical limit: conductance of ballistic 2D
        systems ............................................... 223
   7.7  Concluding remarks .................................... 228

8  Modeling of Ballistic Transport in Mesoscopic Structures ... 233
   Igor Zozoulenko
   8.1  Scattering problem in one dimension ................... 234
        8.1.1  Formulation of the scattering problem .......... 234
        8.1.2  Transfer matrix technique ...................... 236
        8.1.3  Scattering matrix technique .................... 238
        8.1.4  Greens function technique ...................... 239
               8.1.4.1  Tight-binding Hamiltonian ............. 239
               8.1.4.2  Concept of the Green's function ....... 243
               8.1.4.3  Dyson equation ........................ 247
               8.1.4.4  Recursive Green's function
                        technique ............................. 247
               8.1.4.5  Green's function and the scattering
                        matrix ................................ 254
   8.2  Scattering problem in two dimensions .................. 257
        8.2.1  Formulation of the scattering problem .......... 257
        8.2.2  The unitary scattering matrix and its
               properties ..................................... 259
        8.2.3  Calculations of the conductance of mesoscopic
               structures in two dimensions ................... 264

9  Electronic phase coherence ................................. 269
   9.1  The Aharonov-Bohm effect in mesoscopic conductors ..... 269
   9.2  Weak localization ..................................... 273
   9.3  Universal conductance fluctuations .................... 275
   9.4  Phase coherence in ballistic 2DEGs .................... 280
   9.5  Resonant tunneling .................................... 282

10 Single-electron tunneling .................................. 293
   10.1 The principle of Coulomb blockade ..................... 293
   10.2 Basic single-electron tunneling circuits .............. 296
        10.2.1 Coulomb Blockade at the Double Barrier ......... 298
        10.2.2 Current-Voltage Characteristics: the Coulomb
               Staircase ...................................... 302
        10.2.3 The SET Transistor ............................. 306
   10.3 SET circuits with many islands: the single-electron
        pump .................................................. 311

11 Quantum dots ............................................... 319
   11.1 Phenomenology of quantum dots ......................... 320
   11.2 The constant interaction model ........................ 324
        11.2.1 Quantum Dots in Intermediate Magnetic Fields ... 329
        11.2.2 Quantum Rings .................................. 331
   11.3 Beyond the constant interaction model ................. 332
        11.3.1 Hund's Rules in Quantum Dots ................... 333
        11.3.2 Quantum Dots in Strong Magnetic Fields ......... 334
        11.3.3 The Distribution of Nearest-Neighbor
               Spacings ....................................... 336
   11.4 Shape of conductance resonances and I-V
        characteristics ....................................... 340
   11.5 Other types of quantum dots ........................... 342
        11.5.1 Metal Grains ................................... 343
        11.5.2 Molecular Quantum Dots ......................... 344
   11.6 Quantum dots and quantum computation .................. 346

12 Mesoscopic superlattices ................................... 353
   12.1 One-dimensional superlattices ......................... 354
   12.2 Two-dimensional superlattices ......................... 356
        12.2.1 Semiclassical Effects .......................... 356
        12.2.2 Quantum Effects ................................ 362

13 Spintronics ................................................ 365
   13.1 Spintronics ........................................... 365
        Ferromagnetic sandwich structures ..................... 366
        13.1.1 Tunneling Magneto-Resistance (TMR) and Giant
               Magneto-Resistance (GMR) ....................... 366
        13.1.2 Spin Injection Into a Non-Magnetic Conductor ... 369
   13.2 The Datta-Das spin field effect transistor ............ 373
        13.2.1 Concept of the Datta-Das Transistor ............ 373
        13.2.2 Spin Injection in Semiconductors ............... 374
               13.2.2.1 Interface tunnel barriers ............. 374
               13.2.2.2 Ferromagnetic semiconductors .......... 376
        13.2.3 Gate-Induced Spin Rotation: the Rashba
               Effect ......................................... 378
        13.2.4 Spin Relaxation and Spin Dephasing ............. 380

A  SI and cgs units ........................................... 383
В  Correlation and convolution ................................ 385
   B.l  Fourier transformation ................................ 385
   B.2  Convolutions .......................................... 385
   B.3  Correlation functions ................................. 386
С  Capacitance matrix and electrostatic energy ................ 389
D  The transfer Hamiltonian ................................... 393
E  Solutions to selected exercises ............................ 395

References .................................................... 425

Index ......................................................... 435


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:50 2019. Размер: 19,078 bytes.
Посещение N 1735 c 01.11.2011