Blundell S.J. Concepts in thermal physics (Oxford, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBlundell S.J. Concepts in thermal physics / S.J.Blundell, K.M.Blundell. - 2nd ed. - Oxford: Oxford University Press, 2010. - xviii, 493 p.: ill., ports. - Bibliogr.: p.485-487. - Ind.: p.489-493. - ISBN 978-0-19-956209-1
 

Оглавление / Contents
 
   Preface .................................................... vii
   Preface to the second edition ................................ x

I Preliminaries ................................................. 1

1  Introduction ................................................. 2
   1.1  What is a mole? ......................................... 3
   1.2  The thermodynamic limit ................................. 4
   1.3  The ideal gas ........................................... 6
   1.4  Combinatorial problems .................................. 7
   1.5  Plan of the book ........................................ 9
   Exercises ................................................... 12
2  Heat ........................................................ 13
   2.1  A definition of heat ................................... 13
   2.2  Heat capacity .......................................... 14
   Exercises ................................................... 17
3  Probability ................................................. 18
   3.1  Discrete probability distributions ..................... 19
   3.2  Continuous probability distributions ................... 20
   3.3  Linear transformation .................................. 21
   3.4  Variance ............................................... 22
   3.5  Linear transformation and the variance ................. 23
   3.6  Independent variables .................................. 24
   3.7  Binomial distribution .................................. 26
   Further reading ............................................. 29
   Exercises ................................................... 29
4  Temperature and the Boltzmann factor ........................ 32
   4.1  Thermal equilibrium .................................... 32
   4.2  Thermometers ........................................... 33
   4.3  The microstates and macrostates ........................ 35
   4.4  A statistical definition of temperature ................ 36
   4.5  Ensembles .............................................. 38
   4.6  Canonical ensemble ..................................... 38
   4.7  Applications of the Boltzmann distribution ............. 42
   Further reading ............................................. 46
   Exercises ................................................... 46

II Kinetic theory of gases ..................................... 47

5  The Maxwell-Boltzmann distribution .......................... 48
   5.1  The velocity distribution .............................. 48
   5.2  The speed distribution ................................. 49
   5.3  Experimental justification ............................. 51
   Exercises ................................................... 54
6  Pressure .................................................... 56
   6.1  Molecular distributions ................................ 57
   6.2  The ideal gas law ...................................... 58
   6.3  Dalton's law ........................................... 60
   Exercises ................................................... 61
7  Molecular effusion .......................................... 64
   7.1  Flux ................................................... 64
   7.2  Effusion ............................................... 66
   Exercises ................................................... 69
8  The mean free path and collisions ........................... 70
   8.1  The mean collision time ................................ 70
   8.2  The collision cross-section ............................ 71
   8.3  The mean free path ..................................... 73
   Exercises ................................................... 74

III Transport and thermal diffusion ............................ 75
  
9  Transport properties in gases ............................... 76
   9.1  Viscosity .............................................. 76
   9.2  Thermal conductivity ................................... 81
   9.3  Diffusion .............................................. 83
   9.4  More detailed theory ................................... 86
   Further reading ............................................. 88
   Exercises ................................................... 89
10 The thermal diffusion equation .............................. 90
   10.1 Derivation of the thermal diffusion equation ........... 90
   10.2 The one-dimensional thermal diffusion equation ......... 91
   10.3 The steady state ....................................... 94
   10.4 The thermal diffusion equation for a sphere ............ 94
   10.5 Newton's law of cooling ................................ 99
   10.6 The Prandtl number .................................... 100
   10.7 Sources of heat ....................................... 101
   10.8 Particle diffusion .................................... 102
   Exercises .................................................. 103

IV The first law .............................................. 107

11 Energy ..................................................... 108
   11.1 Some definitions ...................................... 108
   11.2 The first law of thermodynamics ....................... 110
   11.3 Heat capacity ......................................... 112
   Exercises .................................................. 115
12 Isothermal and adiabatic processes ......................... 118
   12.1 Reversibility ......................................... 118
   12.2 Isothermal expansion of an ideal gas .................. 120
   12.3 Adiabatic expansion of an ideal gas ................... 121
   12.4 Adiabatic atmosphere .................................. 121
   Exercises .................................................. 123

V The second law .............................................. 125

13 Heat engines and the second law ............................ 126
   13.1 The second law of thermodynamics ...................... 126
   13.2 The Carnot engine ..................................... 127
   13.3 Carnot's theorem ...................................... 130
   13.4 Equivalence of Clausius' and Kelvin's statements ...... 131
   13.5 Examples of heat engines .............................. 131
   13.6 Heat engines running backwards ........................ 133
   13.7 Clausius' theorem ..................................... 134
   Further reading ............................................ 137
   Exercises .................................................. 137
14 Entropy .................................................... 140
   14.1 Definition of entropy ................................. 140
   14.2 Irreversible change ................................... 140
   14.3 The first law revisited ............................... 142
   14.4 The Joule expansion ................................... 144
   14.5 The statistical basis for entropy ..................... 146
   14.6 The entropy of mixing ................................. 147
   14.7 Maxwell's demon ....................................... 149
   14.8 Entropy and probability ............................... 150
   Exercises .................................................. 153
15 Information theory ......................................... 157
   15.1 Information and Shannon entropy ....................... 157
   15.2 Information and thermodynamics ........................ 159
   15.3 Data compression ...................................... 160
   15.4 Quantum information ................................... 162
   15.5 Conditional and joint probabilities ................... 165
   15.6 Bayes' theorem ........................................ 165
   Further reading ............................................ 168
   Exercises .................................................. 169

VI Thermodynamics in action ................................... 171

16 Thermodynamic potentials ................................... 172
   16.1 Internal energy, U .................................... 172
   16.2 Enthalpy, H ........................................... 173
   16.3 Helmholtz function, F ................................. 174
   16.4 Gibbs function, G ..................................... 175
   16.5 Constraints ........................................... 176
   16.6 Maxwell's relations ................................... 179
   Exercises .................................................. 187
17 Rods, bubbles, and magnets ................................. 191
   17.1 Elastic rod ........................................... 191
   17.2 Surface tension ....................................... 194
   17.3 Electric and magnetic dipoles ......................... 195
   17.4 Paramagnetism ......................................... 196
   Exercises .................................................. 201
   18 The third law ........................................... 203
   18.1 Different statements of the third law ................. 203
   18.2 Consequences of the third law ......................... 205
   Exercises .................................................. 208

VII Statistical mechanics ..................................... 209

19 Equipartition of energy .................................... 210
   19.1 Equipartition theorem ................................. 210
   19.2 Applications .......................................... 213
   19.3 Assumptions made ...................................... 215
   19.4 Brownian motion ....................................... 217
   Exercises .................................................. 218
20 The partition function ..................................... 219
   20.1 Writing down the partition function ................... 220
   20.2 Obtaining the functions of state ...................... 221
   20.3 The big idea .......................................... 228
   20.4 Combining partition functions ......................... 228
   Exercises .................................................. 232
21 Statistical mechanics of an ideal gas ...................... 233
   21.1 Density of states ..................................... 233
   21.2 Quantum concentration ................................. 235
   21.3 Distinguishability .................................... 236
   21.4 Functions of state of the ideal gas ................... 237
   21.5 Gibbs paradox ......................................... 240
   21.6 Heat capacity of a diatomic gas ....................... 241
   Exercises .................................................. 243
22 The chemical potential ..................................... 244
   22.1 A definition of the chemical potential ................ 244
   22.2 The meaning of the chemical potential ................. 245
   22.3 Grand partition function .............................. 247
   22.4 Grand potential ....................................... 248
   22.5 Chemical potential as Gibbs function per particle ..... 250
   22.6 Many types of particle ................................ 250
   22.7 Particle number conservation laws ..................... 251
   22.8 Chemical potential and chemical reactions ............. 252
   22.9 Osmosis ............................................... 257
   Further reading ............................................ 261
   Exercises .................................................. 262
23 Photons .................................................... 263
   23.1 The classical thermodynamics of electromagnetic
        radiation ............................................. 264
   23.2 Spectral energy density ............................... 265
   23.3 Kirchhoff's law ....................................... 266
   23.4 Radiation pressure .................................... 268
   23.5 The statistical mechanics of the photon gas ........... 269
   23.6 Black-body distribution ............................... 270
   23.7 Cosmic microwave background radiation ................. 273
   23.8 The Einstein A and В coefficients ..................... 274
   Further reading ............................................ 277
   Exercises .................................................. 278
24 Phonons .................................................... 279
   24.1 The Einstein model .................................... 279
   24.2 The Debye model ....................................... 281
   24.3 Phonon dispersion ..................................... 284
   Further reading ............................................ 287
   Exercises .................................................. 287

VIII Beyond the ideal gas ..................................... 289

25 Relativistic gases ......................................... 290
   25.1 Relativistic dispersion relation for massive
        particles ............................................. 290
   25.2 The ultrarelativistic gas ............................. 290
   25.3 Adiabatic expansion of an ultrarelativistic gas ....... 293
   Exercises .................................................. 295
26 Real gases ................................................. 296
   26.1 The van der Waals gas ................................. 296
   26.2 The Dieterici equation ................................ 304
   26.3 Virial expansion ...................................... 306
   26.4 The law of corresponding states ....................... 310
   Exercises .................................................. 312
27 Cooling real gases ......................................... 313
   27.1 The Joule expansion ................................... 313
   27.2 Isothermal expansion .................................. 315
   27.3 Joule-Kelvin expansion ................................ 316
   27.4 Liquefaction of gases ................................. 318
   Exercises .................................................. 320
28 Phase transitions .......................................... 321
   28.1 Latent heat ........................................... 321
   28.2 Chemical potential and phase changes .................. 324
   28.3 The Clausius-Clapeyron equation ....................... 324
   28.4 Stability and metastability ........................... 329
   28.5 The Gibbs phase rule .................................. 332
   28.6 Colligative properties ................................ 334
   28.7 Classification of phase transitions ................... 335
   28.8 The Ising model ....................................... 338
   Further reading ............................................ 343
   Exercises .................................................. 343
29 Bose—Einstein and Fermi-Dirac distributions ................ 345
   29.1 Exchange and symmetry ................................. 345
   29.2 Wave functions of identical particles ................. 346
   29.3 The statistics of identical particles ................. 349
   Further reading ............................................ 353
   Exercises .................................................. 354
30 Quantum gases and condensates .............................. 358
   30.1 The non-interacting quantum fluid ..................... 358
   30.2 The Fermi gas ......................................... 361
   30.3 The Bose gas .......................................... 366
   30.4 Bose-Einstein condensation (ВЕС) ...................... 367
   Further reading ............................................ 373
   Exercises .................................................. 373

IX Special topics ............................................. 375

31 Sound waves ................................................ 376
   31.1 Sound waves under isothermal conditions ............... 377
   31.2 Sound waves under adiabatic conditions ................ 377
   31.3 Are sound waves in general adiabatic or isothermal? ... 378
   31.4 Derivation of the speed of sound within fluids ........ 379
   Further reading ............................................ 382
   Exercises .................................................. 382
32 Shock waves ................................................ 383
   32.1 The Mach number ....................................... 383
   32.2 Structure of shock waves .............................. 383
   32.3 Shock conservation laws ............................... 385
   32.4 The Rankine-Hugoniot conditions ....................... 386
   Further reading ............................................ 389
   Exercises .................................................. 389
33 Brownian motion and fluctuations ........................... 390
   33.1 Brownian motion ....................................... 390
   33.2 Johnson noise ......................................... 393
   33.3 Fluctuations .......................................... 394
   33.4 Fluctuations and the availability ..................... 395
   33.5 Linear response ....................................... 397
   33.6 Correlation functions ................................. 400
   Further reading ............................................ 407
   Exercises .................................................. 407
34 Non-equilibrium thermodynamics ............................. 408
   34.1 Entropy production .................................... 408
   34.2 The kinetic coefficients .............................. 409
   34.3 Proof of the Onsager reciprocal relations ............. 410
   34.4 Thermoelectricity ..................................... 413
   34.5 Time reversal and the arrow of time ................... 417
   Further reading ............................................ 419
   Exercises .................................................. 419
35 Stars ...................................................... 420
   35.1 Gravitational interaction ............................. 421
   35.2 Nuclear reactions ..................................... 426
   35.3 Heat transfer ......................................... 427
   Further reading ............................................ 434
   Exercises .................................................. 434
36 Compact objects ............................................ 435
   36.1 Electron degeneracy pressure .......................... 435
   36.2 White dwarfs .......................................... 437
   36.3 Neutron stars ......................................... 438
   36.4 Black holes ........................................... 440
   36.5 Accretion ............................................. 441
   36.6 Black holes and entropy ............................... 442
   36.7 Life, the Universe, and entropy ....................... 443
   Further reading ............................................ 445
   Exercises .................................................. 445
37  Earth's atmosphere ........................................ 446
   37.1 Solar energy .......................................... 446
   37.2 The temperature profile in the atmosphere ............. 447
   37.3 Radiative transfer .................................... 449
   37.4 The greenhouse effect ................................. 452
   37.5 Global warming ........................................ 456
   Further reading ............................................ 460
   Exercises .................................................. 460

A  Fundamental constants ...................................... 461
B  Useful formulae ............................................ 462
С  Useful mathematics ......................................... 464
   C.l  The factorial integral ................................ 464
   C.2  The Gaussian integral ................................. 464
   C.3  Stirling's formula .................................... 467
   C.4  Riemann zeta function ................................. 469
   C.5  The poly logarithm .................................... 470
   C.6  Partial derivatives ................................... 471
   C.7  Exact differentials ................................... 472
   C.8  Volume of a hypersphere ............................... 473
   C.9  Jacobians ............................................. 473
   C.10 The Dirac delta function .............................. 475
   C.11 Fourier transforms .................................... 475
   C.12 Solution of the diffusion equation .................... 476
   C.13 Lagrange multipliers .................................. 477
D  The electromagnetic spectrum ............................... 479
E  Some thermodynamical definitions ........................... 480
F  Thermodynamic expansion formulae ........................... 481
G  Reduced mass ............................................... 482
H  Glossary of main symbols ................................... 483

Bibliography .................................................. 485

Index ......................................................... 489


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 25,083 bytes.
Посещение N 1919 c 17.04.2012