Hooker S. Laser physics (Oxford, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHooker S. Laser physics / S.Hooker, C.Webb. - Oxford: Oxford University Press, 2010. - xv, 586 p.: ill. - (Oxford master series in physics; 9). - Bibliogr.: p.563-578. - Ind.: p.579-586. - ISBN 978-0-19-850691-1
 

Место хранения: 053 | Институт лазерной физики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  The laser ............................................... 1
   1.2  Electromagnetic radiation in a closed cavity ............ 3
        1.2.1 The density of modes .............................. 7
   1.3  Planck's law ............................................ 7
        1.3.1 The energy density of blackbody radiation ......... 8
   Further reading .............................................. 9
   Exercises .................................................... 9
2  The interaction of radiation and matter ..................... 12
   2.1  The Einstein treatment ................................. 12
        2.1.1 Relations between the Einstein coefficients ...... 14
   2.2  Conditions for optical gain ............................ 16
        2.2.1  Conditions for steady-state inversion ........... 16
        2.2.2  Necessary, but not sufficient condition ......... 18
   2.3  The semi-classical treatment ........................... 19
        2.3.1  Outline ......................................... 19
        2.3.2  Selection rules for electric dipole
               transitions ..................................... 20
   2.4  Atomic population kinetics ............................. 21
        2.4.1  Rate equations .................................. 22
        2.4.2  Semi-classical equations ........................ 22
        2.4.3  Validity of the rate-equation approach .......... 23
   Further reading ............................................. 24
   Exercises ................................................... 25
3  Broadening mechanisms and lineshapes ........................ 27
   3.1  Homogeneous broadening mechanisms ...................... 27
        3.1.1  Natural broadening .............................. 27
        3.1.2  Pressure broadening ............................. 32
        3.1.3  Phonon broadening ............................... 35
   3.2  Inhomogeneous broadening mechanisms .................... 35
        3.2.1  Doppler broadening .............................. 36
        3.2.2  Broadening in amorphous solids .................. 38
   3.3  The interaction of radiation and matter in the
        presence of spectral broadening ........................ 38
        3.3.1  Homogeneously broadened transitions ............. 38
        3.3.2  Inhomogeneously broadened atoms ................. 39
   3.4  The formation of spectral lines: The Voigt profile ..... 40
   3.5 Other broadening effects ................................ 42
        3.5.1 Self-absorption .................................. 42
   Further reading ............................................. 43
   Exercises ................................................... 43
4  Light amplification by the stimulated emission of
   radiation ................................................... 46
   4.1  The optical gain cross-section ......................... 46
        4.1.1  Condition for optical gain ...................... 48
        4.1.2  Frequency dependence of the gain cross-
               section ......................................... 48
        4.1.3  The gain coefficient ............................ 49
        4.1.4  Gain narrowing .................................. 49
   4.2  Narrowband radiation ................................... 50
        4.2.1  Amplification of narrowband radiation ........... 50
        4.2.2  Form of rate equations .......................... 51
   4.3  Gain cross-section for inhomogeneous broadening ........ 52
   4.4  Orders of magnitude .................................... 53
   4.5  Absorption ............................................. 54
        4.5.1  The absorption cross-section .................... 54
        4.5.2  Self-absorption ................................. 55
        4.5.3  Radiation trapping .............................. 56
   Further reading ............................................. 56
   Exercises ................................................... 57
5  Gain saturation ............................................. 60
   5.1  Saturation in a steady-state amplifier ................. 60
        5.1.1  Homogeneous broadening .......................... 60
        5.1.2  Inhomogeneous broadening ........................ 67
   5.2  Saturation in a homogeneously broadened pulsed
        amplifier .............................................. 73
   5.3  Design of laser amplifiers ............................. 77
   Exercises ................................................... 78
6  The laser oscillator ........................................ 83
   6.1  Introduction ........................................... 83
   6.2  Amplified spontaneous emission (ASE) lasers ............ 83
   6.3  Optical cavities ....................................... 85
        6.3.1  General considerations .......................... 85
        6.3.2  Low-loss (or 'stable') optical cavities ......... 89
        6.3.3  High-loss (or 'unstable') optical cavities ...... 97
   6.4  Beam quality .......................................... 103
        6.4.1 The M2 beam-propagation factor .................. 103
   6.5  The approach to laser oscillation ..................... 106
        6.5.1  The 'cold' cavity .............................. 106
        6.5.2  The laser threshold condition .................. 110
   6.6  Laser oscillation above threshold ..................... 111
        6.6.1  Condition for steady-state laser oscillation ... 112
        6.6.2  Homogeneously broadened systems ................ 113
        6.6.3 Inhomogeneously broadened systems' .............. 115
   6.7  Output power .......................................... 117
        6.7.1  Low-gain lasers ................................ 117
        6.7.2  High-gain lasers: the Rigrod analysis .......... 120
        6.7.3  Output power in other cases .................... 123
   Further reading ............................................ 123
   Exercises .................................................. 123
7  Solid-state lasers ......................................... 132
   7.1  General considerations ................................ 132
        7.1.1  Energy levels of ions doped in solid hosts ..... 132
        7.1.2  Radiative transitions .......................... 137
        7.1.3  Non-radiative transitions ...................... 138
        7.1.4  Line broadening ................................ 142
        7.1.5  Three-and four-level systems ................... 142
        7.1.6  Host materials ................................. 146
        7.1.7  Techniques for optical pumping ................. 149
   7.2  Nd3+:YAG and other trivalent rare-earth systems ....... 157
        7.2.1  Energy-level structure ......................... 157
        7.2.2  Transition linewidth ........................... 157
        7.2.3  Nd:YAG laser ................................... 158
        7.2.4  Other crystalline hosts ........................ 163
        7.2.5  Nd:glass laser ................................. 164
        7.2.6  Erbium lasers .................................. 165
        7.2.7  Praseodymium ions .............................. 169
   7.3  Ruby and other trivalent iron-group systems ........... 169
        7.3.1  Energy-level structure ......................... 169
        7.3.2  The ruby laser ................................. 174
        7.3.3  Alexandrite laser .............................. 177
        7.3.4  Cn:LiSAF and Cn:LiCAF .......................... 180
        7.3.5  Ti:sapphire .................................... 180
   Further reading ............................................ 184
   Exercises .................................................. 184
8  Dynamic cavity effects ..................................... 188
   8.1  Laser spiking and relaxation oscillations ............. 188
        8.1.1  Rate-equation analysis ......................... 190
        8.1.2  Analysis of relaxation oscillations ............ 190
        8.1.3  Numerical analysis of laser spiking ............ 192
   8.2  Q-switching ........................................... 193
        8.2.1  Techniques for Q-switching ..................... 194
        8.2.2  Rate-equation analysis of Q-switching .......... 198
        8.2.3  Comparison with numerical simulations .......... 203
   8.3  Modelocking ........................................... 203
        8.3.1  General ideas .................................. 204
        8.3.2  Simple treatment of modelocking ................ 206
        8.3.3  Active modelocking techniques .................. 208
        8.3.4  Passive modelocking techniques ................. 214
   8.4  Other forms of pulsed output .......................... 221
   Further reading ............................................ 222
   Exercises .................................................. 222
9  Semiconductor lasers ....................................... 226
   9.1  Basic features of a typical semiconductor diode
        laser ................................................. 226
   9.2  Review of semiconductor physics ....................... 228
        9.2.1  Band structure ................................. 228
        9.2.2  Density of states and the Fermi energy (T =
               0K) ............................................ 231
        9.2.3  The Fermi-Dirac distribution (T ≠ 0К) .......... 232
        9.2.4  Doped semiconductors ........................... 233
   9.3  Radiative transitions in semiconductors ............... 235
   9.4  Gain at a p-i-n junction .............................. 236
   9.5  Gain in diode lasers .................................. 238
   9.6  Carrier and photon confinement: the double
        heterostructure ....................................... 241
   9.7  Laser materials ....................................... 243
   9.8  Quantum-well lasers1 .................................. 244
   9.9  Laser threshold ....................................... 247
   9.10 Diode laser beam properties ........................... 250
        9.10.1 Beam shape ..................................... 250
        9.10.2 Transverse modes of edge-emitting lasers ....... 250
        9.10.3 Longitudinal modes of diode lasers ............. 251
        9.10.4 Single longitudinal mode diode lasers .......... 253
        9.10.5 Diode laser linewidth .......................... 254
        9.10.6 Tunable diode laser cavities ................... 255
   9.11 Diode laser output power .............................. 257
   9.12 VCSEL lasers .......................................... 259
   9.13 Strained-layer lasers ................................. 261
   9.14 Quantum cascade lasers ................................ 262
   Further reading ............................................ 264
   Exercises .................................................. 264
10 Fibre lasers ............................................... 267
   10.1 Optical fibres ........................................ 267
        10.1.1 The importance of optical-fibre technology ..... 267
        10.1.2 Optical-fibre properties: Ray optics ........... 268
        10.1.3 Optical-fibre properties: Wave optics .......... 271
        10.1.4 Dispersion in optical fibres ................... 274
        10.1.5 Fabrication of optical fibres .................. 276
        10.1.6 Fibre-optic components ......................... 277
   10.2 Wavelength bands for fibre-optic telecommunications ... 280
   10.3 Erbium-doped fibre amplifiers ......................... 282
        10.3.1 Energy levels and pumping schemes .............. 282
        10.3.2 Gain spectra ................................... 282
        10.3.3 EDFA design and layout ......................... 284
        10.3.4 Fabrication of erbium-doped fibre amplifiers ... 285
   10.4 Fibre Raman amplifiers ................................ 285
        10.4.1 Introduction ................................... 285
        10.4.2 Raman scattering ............................... 285
        10.4.3 Fibre Raman amplifiers ......................... 286
        10.4.4 Long-haul optical transmission systems ......... 287
   10.5 High-power fibre lasers ............................... 289
        10.5.1 The revolution in fibre-laser performance ...... 289
        10.5.2 Cladding-pumped fibre-laser design ............. 290
        10.5.3 Materials and mechanisms of cladding-pumped
               fibre-laser systems ............................ 291
        10.5.4 High-power fibre lasers: Linewidth
               considerations ................................. 291
   10.6 High-power pulsed fibre lasers ........................ 293
        10.6.1 Large mode area (LMA) fibres ................... 293
        10.6.2 Q-switched fibre lasers ........................ 294
        10.6.3 Oscillator-amplifier pulsed fibre lasers ....... 294
   10.7 Applications of high-power fibre lasers ............... 295
   Further reading ............................................ 296
   Exercises .................................................. 296
11 Atomic gas lasers .......................................... 298
   11.1 Discharge physics interlude ........................... 298
        11.1.1 Low-pressure and high-pressure discharges ...... 298
        11.1.2 Low-pressure glow discharge .................... 299
        11.1.3 Temperatures ................................... 300
        11.1.4 The steady-state positive column ............... 303
        11.1.5 Ionization rates ............................... 306
        11.1.6 Excitation rates ............................... 307
        11.1.7 Second-kind or superelastic collisions ......... 310
        11.1.8 Excited-state populations in low-pressure
               discharges ..................................... 311
   11.2 The helium-neon laser ................................. 314
        11.2.1 Introduction ................................... 314
        11.2.2 Energy levels, transitions and excitation
               mechanisms ..................................... 316
        11.2.3 Laser construction and operating parameters .... 318
        11.2.4 Output-power limitations of the He-Ne laser .... 319
        11.2.5 Applications of He-Ne lasers ................... 321
   11.3 The argon-ion laser ................................... 321
        11.3.1 Introduction ................................... 321
        11.3.2 Energy levels, transitions and excitation
               mechanisms ..................................... 322
        11.3.3 Laser construction and operating parameters .... 325
        11.3.4 Argon-ion laser: Power limitations ............. 327
        11.3.5 Krypton-ion lasers ............................. 328
        11.3.6 Applications of ion lasers ..................... 329
   Further reading ............................................ 329
   Exercises .................................................. 329
12 Infra-red molecular gas lasers ............................. 332
   12.1 Efficiency considerations ............................. 332
        12.1.1 Energy levels of atoms and molecules ........... 332
        12.1.2 Quantum ratio .................................. 333
   12.2 Partial population inversion between vibrational
        energy levels of molecules ............................ 335
   12.3 Physics of the CO2 laser .............................. 338
        12.3.1 Levels and lifetimes ........................... 338
        12.3.2 The effect of adding N2 ........................ 341
        12.3.3 Effect of adding He ............................ 342
   12.4 CO2 laser parameters .................................. 343
   12.5 Low-pressure c.w. CO2 lasers .......................... 344
   12.6 High-pressure pulsed CO2 lasers ....................... 346
   12.7 Other types of C02 laser .............................. 349
        12.7.1 Gas-dynamic CO2 lasers ......................... 349
        12.7.2 Waveguide CO2 lasers ........................... 351
   12.8 Applications of CO2 lasers ............................ 351
   Further reading ............................................ 352
   Exercises .................................................. 352
13 Ultraviolet molecular gas lasers ........................... 355
   13.1 The UV and VUV spectral regions ....................... 355
   13.2 Energy levels of diatomic molecules ................... 356
        13.2.1 Separation of the overall wave function ........ 356
        13.2.2 Vibrational eigenfunctions ..................... 357
   13.3 Electronic transitions in diatomic molecules: The
        Franck-Condon principle ............................... 358
        13.3.1 Absorption transitions ......................... 358
        13.3.2 The 'Franck-Condon loop' ....................... 360
   13.4 The VUV hydrogen laser ................................ 361
   13.5 The UV nitrogen laser ................................. 364
   13.6 Excimer molecules ..................................... 364
   13.7 Rare-gas excimer lasers ............................... 367
   13.8 Rare-gas halide excimer lasers ........................ 370
        13.8.1 Spectroscopy of the rare-gas halides ........... 370
        13.8.2 Rare-gas halide laser design ................... 371
        13.8.3 Pulse-length limitations of discharge-excited
               RGH lasers ..................................... 373
        13.8.4 Cavity design and beam properties of RHG
               lasers ......................................... 373
        13.8.5 Performance and applications of RGH excimer
               laser .......................................... 375
   Further reading ............................................ 377
   Exercises .................................................. 378
14 Dye lasers ................................................. 380
   14.1 Introduction .......................................... 380
   14.2 Dye molecules ......................................... 380
   14.3 Energy levels and spectra of dye molecules in
        solution .............................................. 382
        14.3.1 Energy-level scheme ............................ 382
        14.3.2 Singlet-singlet absorption ..................... 382
        14.3.3 Singlet-singlet emission spectra ............... 385
        14.3.4 Triplet-triplet absorption ..................... 387
   14.4 Rate-equation models of dye laser kinetics ............ 387
   14.5 Pulsed dye lasers ..................................... 388
        14.5.1 Flashlamp-pumped systems ....................... 388
        14.5.2 Dye lasers pumped by pulsed lasers ............. 389
   14.6 Continuous-wave dye lasers ............................ 391
        14.6.1 Population kinetics ............................ 391
        14.6.2 Continuous waves dye laser design .............. 393
   14.7 Solid-state dye lasers ................................ 395
   14.8 Applications of dye lasers ............................ 396
   Further reading ............................................ 398
   Exercises .................................................. 398
15 Non-linear frequency conversion ............................ 400
   15.1 Introduction .......................................... 400
   15.2 Linear optics of crystals ............................. 400
        15.2.1 Classes of anisotropic crystals ................ 400
        15.2.2 Vectors ........................................ 402
        15.2.3 Field directions for o-and e-rays in a
               uniaxial crystal ............................... 403
   15.3 Basics of non-linear optics ........................... 405
        15.3.1 Maxwell's equations for non-linear media ....... 405
        15.3.2 Second-harmonic generation in anisotropic
               crystals ....................................... 406
        15.3.3 The requirement for phase matching ............. 408
   15.4 Phase-matching techniques ............................. 409
        15.4.1 Birefringent phase matching in uniaxial
               crystals ....................................... 409
        15.4.2 Critical and non-critical phase matching ....... 412
        15.4.3 Poynting vector walk-off in birefringent
               phase matching ................................. 414
        15.4.4 Other factors affecting SHG conversion
               efficiency ..................................... 414
        15.4.5 Phase-matched SHG in biaxial crystals .......... 415
        15.4.6 Birefringent materials for SHG ................. 416
        15.4.7 Quasi-phase matching techniques ................ 418
   15.5 SHG: practical aspects ................................ 420
   15.6 Three-wave mixing and third-harmonic generation
        (THG) ................................................. 421
        15.6.1 Three-wave mixing processes in general ......... 421
        15.6.2 Third-harmonic generation (THG) ................ 423
   15.7 Optical parametric oscillators (OPOs) ................. 424
        15.7.1 Parametric interactions ........................ 424
        15.7.2 Optical parametric oscillators (OPOs) .......... 425
        15.7.3 Practical parametric devices ................... 426
   Further reading ............................................ 428
   Exercises .................................................. 428
16 Precision frequency control of lasers ...................... 431
   16.1 Frequency pulling ..................................... 431
   16.2 Single longitudinal mode operation .................... 433
        16.2.1 Short cavity ................................... 434
        16.2.2 Intra-cavity etalons ........................... 435
        16.2.3 Ring resonators ................................ 437
        16.2.4 Other techniques ............................... 440
   16.3 Output linewidth ...................................... 440
        16.3.1 The Schawlow-Townes limit ...................... 441
        16.3.2 Practical limitations .......................... 444
        16.3.3 Intensity noise ................................ 446
   16.4 Frequency locking ..................................... 448
        16.4.1 Locking to atomic or molecular transitions ..... 450
        16.4.2 Locking to an external cavity .................. 452
   16.5 Frequency combs ....................................... 453
   Further reading ............................................ 456
   Exercises .................................................. 456
17 Ultrafast lasers ........................................... 462
   17.1 Propagation of ultrafast laser pulses in dispersive
        media ................................................. 462
        17.1.1 The time-bandwidth product ..................... 462
        17.1.2 General considerations ......................... 463
        17.1.3 Propagation through a dispersive system ........ 466
        17.1.4 Propagation of Gaussian pulses ................. 469
        17.1.5 Non-linear effects: self-phase modulation and
               the B-integral ................................. 472
   17.2 Dispersion control .................................... 474
        17.2.1 Geometric dispersion control ................... 474
        17.2.2 Chirped mirrors ................................ 478
        17.2.3 Pulse shaping .................................. 480
   17.3 Sources of ultrafast optical pulses ................... 482
        17.3.1 Modelocked lasers .............................. 482
        17.3.2 Oscillators .................................... 483
        17.3.3 Chirped-pulse amplification (CPA) .............. 483
   17.4 Measurement of ultrafast pulses ....................... 489
        17.4.1 Autocorrelators ................................ 489
        17.4.2 Methods for exact reconstruction of the
               pulse .......................................... 492
   Further reading ............................................ 495
   Exercises .................................................. 495
18 Short-wavelength lasers .................................... 502
   18.1 Definition of wavelength ranges ....................... 503
   18.2 Difficulties in achieving optical gain at short
        wavelengths ........................................... 503
        18.2.1 Pump-power scaling ............................. 503
   18.3 General properties of short-wavelength lasers ......... 505
        18.3.1 Travelling-wave pumping ........................ 505
        18.3.2 Threshold and saturation behaviour in an ASE
               laser .......................................... 506
        18.3.3 Spectral width of the output ................... 508
        18.3.4 Coherence properties of ASE lasers ............. 509
   18.4 Laser-generated plasmas ............................... 510
        18.4.1 Inverse bremsstrahlung heating ................. 510
        18.4.2 Generation of highly ionized plasmas from
               laser-solid interactions ....................... 511
        18.4.3 Optical field ionization ....................... 514
   18.5 Collisionally excited lasers .......................... 517
        18.5.1 Ne-like ions ................................... 518
        18.5.2 Ni-like ions ................................... 520
        18.5.3 Methods of pumping ............................. 520
        18.5.4 Collisionally excited OFI lasers ............... 528
   18.6 Recombination lasers .................................. 530
        18.6.1 H-like carbon .................................. 532
        18.6.2 OFI recombination lasers ....................... 533
   18.7 Other sources ......................................... 535
        18.7.1 High-harmonic generation ....................... 535
        18.7.2 Free-electron lasers ........................... 537
   Further reading ............................................ 541
   Exercises .................................................. 541

Appendix A: The semi-classical theory of the interaction of
   radiation and matter ....................................... 548
   A.1  The amplitude equations ............................... 548
        A.1.1  Derivation of the amplitude equations .......... 548
        A.1.2  Solution of the amplitude equations ............ 550
   A.2  Calculation of the Einstein В coefficient ............. 551
        A.2.1  Polarized atoms and radiation .................. 551
        A.2.2  Unpolarized atoms and/or radiation ............. 553
        A.2.3  Treatment of degeneracy ........................ 554
   A.3  Relations between the Einstein coefficients ........... 555
   A.4  Validity of rate equations ............................ 555

Appendix B: The spectral Einstein coefficients ................ 557

Appendix C: Kleinman's conjecture ............................. 560

Bibliography .................................................. 563

Index ......................................................... 579


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 31,347 bytes.
Посещение N 1866 c 17.04.2012