Davidson D.B. Computational electromagnetics for RF and microwave engineering (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDavidson D.B. Computational electromagnetics for RF and microwave engineering. - 2nd ed. - Cambridge; New York: Cambridge University Press, 2011. - xxii, 505 p.: ill. - Incl. bibl. ref. - Ind.: p.498-505. - ISBN 978-0-521-51891-8
 

Оглавление / Contents
 
Preface to the second edition .................................. xv
Preface to the first edition ................................. xvii
Acknowledgements .............................................. xxi
To the reader ............................................... xxiii
List of notation ............................................. xxiv

1  An overview of computational electromagnetics for RF and
   microwave applications ....................................... 1
   1.1  Introduction ............................................ 1
   1.2  Full-wave СЕМ techniques ................................ 3
   1.3  The method of moments (MoM) ............................. 8
   1.4  The finite difference time domain (FDTD) method ........ 10
   1.5  The finite element method (FEM) ........................ 13
   1.6  Other methods .......................................... 16
   1.7  The СЕМ modelling process .............................. 17
   1.8  Verification and validation ............................ 19
   1.9  Convergence and extrapolation .......................... 23
   1.10 Extending the limits of full-wave СЕМ methods .......... 24
   1.11 СЕМ: the future ........................................ 25
   1.12 A "road map" of this book .............................. 28
   References .................................................. 29

2  The finite difference time domain method:
   a one-dimensional introduction .............................. 32
   David B. Davidson and James T. Aberle
   2.1  Introduction ........................................... 32
   2.2  An overview of finite differences ...................... 33
   2.3  A very brief history of the FDTD ....................... 36
   2.4  A one-dimensional introduction to the FDTD ............. 37
   2.5  Obtaining wideband data using the FDTD ................. 52
   2.6  Numerical dispersion in FDTD simulations ............... 64
   2.7  The Courant stability criterion derived by von
        Neumann analysis ....................................... 67
   2.8  Conclusion ............................................. 71
   References .................................................. 71
   Problems and assignments .................................... 72

3  The finite difference time domain method in two and three
   dimensions .................................................. 74
   3.1  Introduction ........................................... 74
   3.2  The 2D FDTD algorithm .................................. 74
   3.3  The PML absorbing boundary condition ................... 96
   3.4  The 3D FDTD algorithm ................................. 109
   3.5  Commercial implementations ............................ 117
   3.6  Further reading ....................................... 124
   3.7  Conclusions ........................................... 125
   References ................................................. 126
   Problems and assignments ................................... 127

4  A one-dimensional introduction to the method of moments:
   modelling thin wires   and infinite cylinders .............. 130
   4.1  Introduction .......................................... 130
   4.2  An electrostatic example .............................. 131
   4.5  The method of weighted residuals ...................... 150
   4.6  Scattering from infinite cylinders .................... 152
   4.7  Further reading ....................................... 160
   4.8  Conclusions ........................................... 162
   References ................................................. 162
   Problems and assignments ................................... 164

5  The application of the FEKO and NEC-2 codes to thin-wire
   antenna modelling .......................................... 166
   5.1  Introduction .......................................... 166
   5.2  An introductory example: the dipole ................... 168
   5.3  A wire antenna array: the Yagi-Uda antenna ............ 172
   5.4  A log-periodic antenna ................................ 177
   5.5  An axial mode helix antenna ........................... 185
   5.6  A Wu-King loaded dipole ............................... 193
   5.7  Conclusions ........................................... 199
   References ................................................. 199

6  The method of moments for surface modelling ................ 201
   6.1  Electric and magnetic field integral equations ........ 201
   6.2  The Rao-Wilton-Glisson (RWG) element .................. 203
   6.3  A mixed potential electric field integral equation
        for electromagnetic scattering by surfaces of
        arbitrary shape ....................................... 206
   6.4  Some examples of surface modelling .................... 218
   6.5  Modelling homogeneous material bodies using
        equivalent currents ................................... 224
   6.6  Scattering from a dielectric sphere ................... 226
   6.7  Computational implications of surface and volume
        modelling with the MoM ................................ 228
   6.8  Hybrid MoM/asymptotic techniques for large problems ... 230
   6.9  Other approaches for the solution of
        electromagnetically large problems .................... 237
   6.10 Further reading ....................................... 258
   6.11 Concluding comments ................................... 260
   References ................................................. 260
   Problem .................................................... 263

7  The method of moments and stratified media: theory ......... 264
   7.1  Introduction .......................................... 264
   7.2  Dyadic Green functions: some introductory notes ....... 264
   7.3  A static example of a stratified medium problem: the
        grounded dielectric slab .............................. 266
   7.4  The Sommerfeld potentials ............................. 269
   7.5  Evaluating the Sommerfeld integrals ................... 278
   7.6  MoM solution using the Sommerfeld potentials .......... 289
   7.7  Further reading ....................................... 297
   References ................................................. 298
   Assignments ................................................ 299

8  The method of moments and stratified media: practical
   applications of a commercial code .......................... 300
   8.1  Printed antenna and microstrip technology: a brief
        review ................................................ 300
   8.2  A simple patch antenna ................................ 301
   8.3  Mutual coupling between microstrip antennas ........... 303
   8.4  An array with "scan blindness" ........................ 308
   8.5  A concluding discussion of stratified media
        formulations .......................................... 314
   References ................................................. 315

9  A one-dimensional introduction to the finite element
   method ..................................................... 317
   9.1  Introduction .......................................... 317
   9.2  The variational boundary value problem: the
        transmission line problem revisited ................... 318
   9.3  Improving and generalizing the FEM solution ........... 331
   9.4  Further reading ....................................... 339
   9.5  Conclusions ........................................... 340
   References ................................................. 340
   Problems and assignments ................................... 341

10 The finite element method in two dimensions: scalar and
   vector elements ............................................ 342
   10.1 Introduction .......................................... 342
   10.2 Finite element solution of the Laplace equation in
        two dimensions using scalar elements .................. 343
   10.3 The Galerkin (weighted residual) formulation .......... 359
   10.4 Simplex coordinates ................................... 364
   10.5 The high-frequency variational functional ............. 367
   10.6 The null space of the curl operator and spurious
        modes ................................................. 367
   10.7 Vector (edge) elements ................................ 371
   10.8 Application to waveguide eigenvalue analysis .......... 378
   10.9 Waveguide dispersion analysis ......................... 394
   10.10 Further reading ...................................... 400
   10.11 Conclusions .......................................... 402
   References ................................................. 403
   Problems and assignments ................................... 406

11 The finite element method in three dimensions .............. 407
   11.1 The three-dimensional Whitney element ................. 407
   11.2 Higher-order elements ................................. 415
   11.3 The FEM from the variational boundary value problem
        viewpoint ............................................. 427
   11.4 A deterministic 3D application: waveguide obstacle
        analysis .............................................. 429
   11.5 Application to two waveguide discontinuity problems ... 432
   11.6 Open-region finite element method formulations:
        absorbing boundary conditions (ABCs) .................. 441
   11.7 Further reading ....................................... 444
   11.8 Conclusions ........................................... 445
   References ................................................. 445
   Problems and assignments ................................... 448

12 A selection of more advanced topics in full-wave
   computational electromagnetics ............................. 451
   12.1 Hybrid finite element/method of moments
        formulations .......................................... 451
   12.2 An application of the FEM/MoM hybrid - GSM base
        stations .............................................. 454
   12.3 Time domain FEM ....................................... 457
   12.4 Sparse matrix solvers ................................. 468
   12.5 A posteriori error estimation and adaptive meshing .... 473
   12.6 Further reading and conclusions ....................... 478
   References ................................................. 481

Appendix A: The Whitney element ............................... 484
Appendix B: The Newmark-β time-stepping algorithm ............. 486
            References ........................................ 488
Appendix C: On the convergence of the MoM ..................... 489
            Reference ......................................... 490
Appendix D: Useful formulas for simplex coordinates ........... 491
Appendix E: Web resources ..................................... 493
Appendix F: Matlab files supporting this text ................. 496

Index ......................................................... 498


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2020 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:23:36 2019 Размер: 14,850 bytes.
Посещение N 1133 c 10.07.2012