Dynamics at solid state surfaces and interfaces; vol.1: Current developments (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDynamics at solid state surfaces and interfaces. Vol.1: Current developments / ed. by U.Bovensiepen, H.Petek, M.Wolf. - Weinheim: Wiley-VCH, 2010. - xxvi, 619 p.: ill. - Incl. bibl. ref. - Ind.: p.615-619. - ISBN 978-3-527-40937-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
   Preface ................................................... XVII
   List of Contributors ....................................... XIX
   Color Plate .............................................. XXVII
   (after page 379)

Part One  Quasiparticle Dynamics ................................ 1
1  Nonlinear Terahertz Studies of Ultrafast Quasiparticle
   Dynamics in Semiconductors ................................... 3
   Michael Woerner and Thomas Elsaesser
   1.1  Linear Optical Properties of Quasiparticles: The
        Polarization Cloud around a Charge Carrier .............. 4
        1.1.1  Theoretical Models Describing Static and
               Dynamic Properties of Polarons ................... 5
        1.1.2  Experimental Signatures of linear and
               Quasistationary Polaron Properties ............... 8
               1.1.2.1  The Fröhlich Polaron at Rest ............ 8
               1.1.2.2  Frequency-Dependent Mobility of the
                        Fröhlich Polaron ........................ 9
               1.1.2.3  Quasistationary High-Field Transport
                        of Polarons ............................ 11
   1.2  Femtosecond Nonlinear Terahertz and Mid-Infrared
        Spectroscopy
        1.2.1  Generation of High-Field Terahertz Transients ... 13
        1.2.2  Electric Field-Resolved THz Pump-Mid-Infrared
               Probe Experiments ............................... 15
        1.2.3  Nonlinear Terahertz Transmission Experiments .... 17
   1.3  Ultrafast Quantum Kinetics of Polarons in Bulk GaAs .... 20
        1.3.1  Experimental Results ............................ 20
        1.3.2  Discussion ...................................... 22
   1.4  Coherent High-Field Transport in GaAs on Femtosecond
        Timescales ............................................. 23
        1.4.1  Experimental Results ............................ 24
        1.4.2  Discussion ...................................... 26
   1.5  Conclusions and Outlook ................................ 28
   References .................................................. 28
2  Higher Order Photoemission from Metal Surfaces .............. 33
   Aimo Winkelmann, Cheng-Tien Chiang, Francesco Bisio,
   Wen-Chin Lin, Jürgen Kirschner, and Hrvoje Petek
   2.1  Introduction ........................................... 33
   2.2  Observation of Higher Order Photoemission at Cu
        Surfaces ............................................... 34
        2.2.1  Resonant 3PPE in the Cu(001) Electronic Band
               Structure ....................................... 36
   2.3  Electronic Structure Mapping Using Coherent
        Multiphoton Resonances ................................. 39
   2.4  Dynamical Trapping of Electrons in Quasibound States ... 44
   2.5  Above-Threshold Photoemission .......................... 46
   2.6  Spin-Polarized Multiphoton Photoemission ............... 47
   2.7  Summary and Outlook .................................... 48
        References ............................................. 49
3  Electron Dynamics in Image Potential States at Metal
   Surfaces .................................................... 53
   Thomas Fauster
   3.1  Scattering Processes ................................... 53
   3.2  Energies and Dispersion of Image Potential States ...... 55
   3.3  Inelastic Scattering ................................... 57
        3.3.1  Lifetimes of Image Potential States ............. 57
        3.3.2  Momentum Dependence of Lifetimes ................ 60
        3.3.3  Inelastic Intraband Scattering .................. 61
        3.3.4  Inelastic Interband Scattering .................. 62
   3.4  Quasielastic Scattering ................................ 63
        3.4.1  Elastic Interband Scattering .................... 63
        3.4.2  Resonant Interband Scattering ................... 64
        3.4.3  Elastic Intraband Scattering .................... 66
   3.5  Electron-Phonon Scattering ............................. 67
   3.6  Electron Defect Scattering ............................. 69
        3.6.1  Scattering by Adatoms ........................... 69
        3.6.2  Scattering by Steps ............................. 71
   3.7  Summary and Outlook .................................... 72
   References .................................................. 72
4  Relaxation Dynamics in Image Potential States at Solid
   Interfaces .................................................. 75
   James E. Johns, Eric Mьller, Matthew L. Strader, Sean
   Carrett-Roe, and Charles B. Harris
   4.1  Stochastic Interpretation of IPS Decay ................. 80
   4.2  IPS Decay for Solvating Molecules ...................... 87
   4.3  Conclusions ............................................ 94
   References .................................................. 95
5  Dynamics of Electronic States at Metal/Insulator
   Interfaces .................................................. 99
   Jens Cüdde and Ulrich Höfer
   5.1  Introduction ........................................... 99
   5.2  Spectroscopy by One-Photon Photoemission .............. 101
   5.3  Observation by Two-Photon Photoemission ............... 104
   5.4  Lifetimes ............................................. 106
   5.5  Momentum-Resolved Dynamics ............................ 108
   5.6  Summary ............................................... 111
   References ................................................. 111
6  Spin-Dependent Relaxation of Photoexcited Electrons at
   Surfaces of 3d Ferromagnets ................................ 115
   Martin Weineh, Anke В. Schmidt, Martin Pickel, and
   Markus Donath
   6.1  Introduction .......................................... 115
   6.2  Spin-Resolved Two-Photon Photoemission on Image
        Potential States ...................................... 116
        6.2.1  Image Potential States at a Ferromagnetic
               Surface ........................................ 116
        6.2.2  Spin-Resolved Two-Photon Photoemission ......... 117
        6.2.3  Key Aspects of the Experiment .................. 122
   6.3  Spin-Dependent Dynamics ............................... 124
        6.3.1  Spin-Dependent Population Decay of Bulk
               Electrons ...................................... 124
        6.3.2  Spin-Dependent Lifetimes of Image Potential
               States ......................................... 127
        6.3.3  Quasielastic Scattering: Spin-Dependent
               Dephasing ...................................... 128
        6.3.4  Inelastic Intraband Scattering: Magnon
               Emission ....................................... 131
   6.4  Image Potential States: A Sensor for Surface
        Magnetization ......................................... 133
        6.4.1  Projecting the Spin Polarization of Bulk and
               Surface States ................................. 133
        6.4.2  Access to Spin-Orbit Coupling via Dichroism .... 135
   6.5  Summary ............................................... 139
   References ................................................. 140
7  Electron-Phonon Interaction at Interfaces .................. 145
   Philip Hofmann, Evgueni V. Chulkov, and Irina
   Yu. Sklyadneva
   7.1  Introduction .......................................... 145
   7.2  Calculation of the Electron-Phonon Coupling
        Strength .............................................. 147
   7.3  Experimental Determination of the Electron-Phonon
        Coupling Strength ..................................... 152
   7.4  Some Examples ......................................... 157
        7.4.1  The (111) Surface of the Noble Metals .......... 158
        7.4.2  Be(0001) ....................................... 159
        7.4.3  Mg(0001) and Al(001) ........................... 160
   7.5  Conclusions ........................................... 161
   References ................................................. 161

Part Two  Collective Excitations .............................. 167

8  Low-Energy Collective Electronic Excitations at Metal
   Surfaces ................................................... 169
   Vyacheslav M. Silkin, Evgueni V. Chulkov, and Pedro
   M. Echenique
   8.1  Introduction .......................................... 169
   8.2  Analytical and Numerical Calculations ................. 170
        8.2.1  Some Analytical Results ........................ 170
        8.2.2  Self-Consistent Dielectric Response ............ 172
   8.3  Results of Numerical Calculations ..................... 175
        8.3.1  Monolayers ..................................... 175
        8.3.2  Metal Surfaces ................................. 177
               8.3.2.1  1D Calculations ....................... 177
        8.3.3  3D Calculations ................................ 180
        8.3.4  Dynamical Charge Density Oscillations .......... 182
        8.3.5  Acoustic Surface Plasmon Interaction with
               Light .......................................... 184
   8.4  Concluding Remarks .................................... 186
   References ................................................. 186
9  Low-Dimensional Plasmons in Atom Sheets and Atom Chains .... 189
   Tadaaki Nagao
   9.1  Introduction .......................................... 189
   9.2  Difference between the Surface Plasmons and the
        Atomic Scale Plasmons ................................. 190
   9.3  Measurement of Atomic Scale Low-Dimensional Metallic
        Objects ............................................... 191
   9.4  Plasmons Confined in Ag Nanolayers .................... 193
   9.5  Plasmon in a Two-Dimensional Monoatomic Ag Layer ...... 197
   9.6  Plasmons in Atomic Scale Quantum Wires ................ 202
        9.6.1  Plasmons in Self-Assembled Au Atom Chains ...... 203
        9.6.2  Plasmons in In-Induced Atom Chains ............. 207
   9.7  Conclusions ........................................... 210
   References ................................................. 210
10 Excitation and Time-Evolution of Coherent Optical
   Phonons .................................................... 213
   Muneaki Hase, Oleg V. Misochko, and Kunie Ishioka
   10.1  Coherent Phonons in Group V Semimetals ............... 213
        10.1.1 Generation and Relaxation of Different
               Symmetry Phonons ............................... 214
        10.1.2 Coherent Phonons in Extreme Nonequilibrium
               Conditions ..................................... 216
        10.1.3 Time-Resolved X-Ray Detection .................. 218
        10.1.4 Optical Coherent Control ....................... 220
   10.2 Ultrafast Electron-Phonon Coupling in Graphitic
        Materials ............................................. 221
   10.3 Quasiparticle Dynamics in Silicon ..................... 226
   10.4 Coherent Optical Phonons in Metals .................... 227
   10.5 Coherent Phonon-Polaritons in Ferroelectrics .......... 229
   10.6 Current Developments in Other Materials ............... 231
   10.7 Concluding Remarks .................................... 232
   References ................................................. 233
11 Photoinduced Coherent Nuclear Motion at Surfaces: Alkali
   Overlayers on Metals ....................................... 239
   Yoshiyasu Matsumoto and Kazuya Watanabe
   11.1 Introduction .......................................... 239
   11.2 Impulsive Excitation .................................. 240
   11.3 Alkali Metal Overlayers ............................... 242
        11.3.1 Adsorbate Structures ........................... 242
        11.3.2 Surface Phonon Bands ........................... 243
        11.3.3 Electronic Structures .......................... 245
   11.4 Time-Resolved SHG Spectroscopy ........................ 247
        11.4.1 Enhancement of SHG Intensity by Alkali
               Adsorption ..................................... 247
        11.4.2 The Principle of TRSHG Spectroscopy ............ 249
   11.5 Electronic and Nuclear Responses in TRSHG Signals ..... 250
        11.5.1 Representative TRSHG Traces .................... 250
        11.5.2 Electronic Response ............................ 251
        11.5.3 Nuclear Response ............................... 252
        11.5.4 Initial Phase .................................. 255
   11.6 Excitation Mechanism .................................. 256
   11.7 Summary and Outlook ................................... 260
   References ................................................. 260
12 Coherent Excitations at Ferromagnetic Cd(0001) and
   Tb(0001) Surfaces .......................................... 263
   Alexey Melnikov and Uwe Bovensiepen
   12.1 Introduction .......................................... 263
   12.2 Relaxation of the Optically Excited State ............. 264
   12.3 Coupled Lattice and Spin Excitations .................. 267
        12.3.1 Transient Binding Energy Variations of the
               Surface State .................................. 267
        12.3.2 Nonlinear Optics as a Simultaneous Probe of
               Lattice Vibrations and Magnetic Excitations .... 268
               12.3.2.1 Magneto-Induced SHG: Experimental
                        Scheme and Data Analysis .............. 269
               12.3.2.2 Magneto-Induced SHG: Coherent
                        Surface Dynamics ...................... 272
               12.3.2.3 The Mechanism of Coherent Phonon
                        Excitation ............................ 274
               12.3.2.4 Damping of the Coherent Phonons ....... 278
               12.3.2.5 Future Developments ................... 279
   12.4 Conclusion ............................................ 280
   References ................................................. 281

Part Three Heterogeneous Electron Transfer .................... 283

13 Studies on Auger Neutralization of He+ Ions in Front of
   Metal Surfaces ............................................. 285
   Stephan Wethekam and Helmut Winkler
   13.1 Introduction .......................................... 285
   13.2 Concept of Method ..................................... 286
        13.2.1 Trajectories and Time Regime ................... 288
   13.3 Studies on Auger Neutralization of He+ Ions ........... 291
        13.3.1 Studies on Auger Neutralization Making use of
               Isotope Effect ................................. 298
        13.3.2 Face Dependence of Auger Neutralization ........ 300
        13.3.3 Effect of Magnetization of Target Surface on
               Auger Neutralization ........................... 301
   13.4 Summary and Conclusions ............................... 303
   References ................................................. 303
14 Electron Transfer Investigated by X-Ray Spectroscopy ....... 305
   Wilfried Wurth and Alexander Föhlisch
   14.1 Core Hole Clock Spectroscopy .......................... 305
        14.1.1 Basics ......................................... 306
        14.1.2 Electron Stabilization ......................... 309
        14.1.3 Attosecond Charge Transfer and the Effect of
               Orbital Polarization ........................... 311
        14.1.4 Clocks with Different Timing ................... 314
   14.2 Time-Resolved Soft X-Ray Spectroscopy ................. 315
        14.2.1 Laser-Assisted Photoemission ................... 318
        14.2.2 Surface Carrier Dynamics ....................... 319
   14.3 Summary ............................................... 320
   References ................................................. 322
15 Exciton Formation and Decay at Surfaces and Interfaces ..... 325
   Matthias Muntwiler and Xiaoyang Zhu
   15.1 Introduction .......................................... 325
        15.1.1 Exciton Flavors ................................ 326
        15.1.2 Photophysics of Organic Semiconductors ......... 326
   15.2 Exciton Models ........................................ 328
        15.2.1 Dielectric Models .............................. 329
               15.2.1.1 Mott-Wannier Exciton .................. 330
               15.2.1.2 Charge Transfer Exciton at
                        Dielectric Interfaces ................. 330
        15.2.2 Merrifield Model of Frenkel and Charge
               Transfer Excitons .............................. 334
               15.2.2.1 Frenkel Exciton ....................... 335
               15.2.2.2 Charge Transfer Exciton ............... 337
               15.2.2.3 Finite Size Effect .................... 338
   15.3 Photoelectron Spectroscopy of Excitons ................ 338
        15.3.1 Energy Levels .................................. 339
   15.4 Frenkel Excitons in C60 ............................... 341
        15.4.1 Structural Overview ............................ 341
        15.4.2 Energy Levels .................................. 342
        15.4.3 Exciton Dynamics ............................... 346
               15.4.3.1 Coverage Dependence: Distance-
                        Dependent Quenching ................... 346
   15.5 Charge Transfer Excitons at the Surface of
        Pentacene ............................................. 349
        15.5.1 System Overview ................................ 349
        15.5.2 Energy Levels .................................. 350
        15.5.3 Dynamics ....................................... 353
   15.6 Conclusions ........................................... 354
   References ................................................. 356
16 Electron Dynamics at Polar Molecule-Metal Interfaces:
   Competition between Localization, Solvation, and
   Transfer ................................................... 359
   Julia Stähler, Uwe Bovensiepen, and Martin Wolf
   16.1 Introduction .......................................... 359
   16.2 Competing Channels of Electron Relaxation in
        Amorphous Layers ...................................... 361
        16.2.1 Amorphous Ice on Metal Surfaces ................ 363
        16.2.2 Amorphous NH3 on Cu(lll) ....................... 369
   16.3 Ultrafast Trapping and Ultraslow Stabilization of
        Electrons in Crystalline Solvents ..................... 372
        16.3.1 Crystalline Ice on Ru(001) ..................... 372
        16.3.2 Reactivity of Trapped Electrons on Ice ......... 376
   16.4 Conclusion ............................................ 377
   References ................................................. 378

Part Four Photoinduced Modification of Materials and
Femtochemistry ................................................ 381

17 Theory of Femtochemistry at Metal Surfaces: Associative
   Molecular Photodesorption as a Case Study .................. 383
   Peter Saalfrank, Tillmann Klamroth, Tijo Vazhappilly, and
   Rigoberto Hernandez
   17.1 Introduction .......................................... 383
   17.2 Theory of Femtochemistry at Surfaces .................. 385
        17.2.1 Weakly Nonadiabatic Models ..................... 385
               17.2.1.1 Two-and Three-Temperature Models ...... 385
               17.2.1.2 One-Dimensional Classical,
                        Arrhenius-Type Models ................. 387
               17.2.1.3 Langevin Dynamics with Electronic
                        Friction .............................. 388
               17.2.1.4 Quantum Treatment with Master
                        Equations ............................. 389
        17.2.2 Strongly Nonadiabatic Dynamics ................. 390
               17.2.2.1 Multistate Time-Dependent
                        Schrödinger Equation .................. 390
               17.2.2.2 Open-System Density Matrix Theory ..... 390
               17.2.2.3 Stochastic Wave Packet Approaches ..... 393
               17.2.2.4 Quantum-Classical Hopping Schemes ..... 394
   17.3 Femtosecond-Laser Driven Desorption of H2 and D2
        from Ru(0001) ......................................... 395
        17.3.1 Experimental Facts ............................. 395
        17.3.2 Potentials, Electronic Lifetime, and
               Friction ....................................... 395
               17.3.2.1 The Ground-State Potential and
                        Vibrational Levels .................... 395
               17.3.2.2 The Excited-State Potential and
                        Electronic Lifetime ................... 396
               17.3.2.3 Frictional Surfaces and Vibrational
                        Relaxation ............................ 397
        17.3.3 DIMET at a Single Laser Fluence ................ 399
               17.3.3.1 Langevin Dynamics Approach ............ 399
               17.3.3.2 Stochastic Wave Packet Approach ....... 401
        17.3.4 Scaling of DIMET with Laser Fluence ............ 402
   17.4 Conclusions ........................................... 404
   References ................................................. 405
18 Time-Resolved Investigation of Electronically Induced
   Diffusion Processes ........................................ 409
   Jens Güdde, Mischa Bonn, Hiromu Ueba, and Ulrich Höfer
   18.1 Introduction .......................................... 409
   18.2 Detection of Electronically Induced Diffusion ......... 410
        18.2.1 Time-Resolved Techniques ....................... 411
        18.2.2 Second Harmonic Generation ..................... 412
        18.2.3 Time-Resolved Sum-Frequency Generation ......... 414
   18.3 Description of Electronically Induced Motion by
        Electronic Friction ................................... 415
        18.3.1 Electronic Friction Models ..................... 415
        18.3.2 Generalized Description of Heat Transfer at
               Surfaces ....................................... 418
   18.4 Results ............................................... 426
        18.4.1 O/Pt(lll) ...................................... 426
        18.4.2 CO/Pt(533) ..................................... 434
               18.4.2.1 Numerical Results of CO Hopping on
                        a Pt (553) Surface .................... 439
               18.4.2.2 Two-Pulse Correlation Measurements .... 440
   18.5 Summary ............................................... 441
   References ................................................. 442
19 Laser-Induced Softening of Lattice Vibrations .............. 447
   Eeuwe S. Zijlstra and Martin E. Garcia
   19.1 Introduction .......................................... 447
   19.2 Theoretical Framework ................................. 448
        19.2.1 The Hamiltonian of the Solid ................... 448
        19.2.2 Born-Oppenheimer Approximation ................. 449
               19.2.2.1 General Solution of Ĥ ................. 450
               19.2.2.2 Adiabatic Approximation ............... 450
        19.2.3 Properties of Ĥ0 ............................... 451
        19.2.4 Phonons in the Ground-State Potential Energy
               Surface ........................................ 452
        19.2.5 Electron-Phonon Coupling and Excitation of
               Coherent Phonons in the Ground-State
               Potential Energy Surface ....................... 453
        19.2.6 "Laser Excited" Potential Energy Surfaces ...... 454
        19.2.7 Displacive Excitation of Coherent Phonons.
               Phonon Softening ............................... 457
        19.2.8 Comparison to Other Theories for the
               Generation of Coherent Phonons ................. 457
   19.3 Laser-Induced Events Involving Phonon Softening ....... 458
        19.3.1 The A7 Structure ............................... 459
        19.3.2 Ultrafast Electron-Hole Thermalization in
               Bismuth ........................................ 461
        19.3.3 Amplitude Collapse and Revival of Coherent
               Alg Phonons in Bismuth: A Classical
               Phenomenon? .................................... 464
        19.3.4 Laser-Induced Phonon-Phonon Interactions in
               Bismuth ........................................ 465
        19.3.5 Ultrafast Laser-Induced Solid-to-Solid
               Transition in Arsenic Under Pressure ........... 466
        19.3.6 The Zinc-Blende Structure. Ultrafast Melting
               of InSb ........................................ 468
   19.4 Conclusion ............................................ 471
   References ................................................. 471
20 Femtosecond Time- and Angle-Resolved Photoemission as a
   Real-time Probe of Cooperative Effects in Correlated
   Electron Materials ......................................... 475
   Patrick S. Kirchmann, Luca Petfetti, Martin Wolf, and Uwe
   Bovensiepen
   20.1 Introduction .......................................... 475
   20.2 Hot Electron Relaxation ............................... 477
   20.3 Photoinduced Insulator-Metal Transitions .............. 480
        20.3.1 Response of 1T-TaS2 to Optical Excitation ...... 480
        20.3.2 Dynamics of a Photoinduced Melting of a
               Charge Density Wave in TbTe3 ................... 485
               20.3.2.1 Electronic Band Structure of TbTe3 in
                        Thermal Equilibrium ................... 486
               20.3.2.2 Weak Perturbation Regime .............. 487
               20.3.2.3 Strong Perturbation Regime ............ 490
               20.3.2.4 Assignment of the Collective Modes .... 490
               20.3.2.5 Ultrafast Melting of the CDW State .... 491
   20.4 Discussion ............................................ 494
   20.5 Conclusions and Outlook ............................... 495
   References ................................................. 496

Part Five  Recent Developments and Future Directions .......... 499

21 Time-Resolved Photoelectron Spectroscopy at Surfaces Using
   Femtosecond XUV Pulses ..................................... 501
   Stefan Mathias, Michael Bauer, Martin Aeschlimann, Luis
   Miaja-Avila, Henry C. Kapteyn, and Margaret M, Murnane
   21.1 Introduction .......................................... 501
   21.2 Femtosecond XUV Sources ............................... 503
        21.2.1 High Harmonic Generation ....................... 503
        21.2.2 Free Electron Laser ............................ 507
   21.3 Photoelectron Spectroscopy Using XUV Pulses: Some
        Technical Aspects ..................................... 510
        21.3.1 Time-Resolved PES and Angle-Resolved PES ....... 510
               21.3.1.1 Experimental Setup .................... 510
               21.3.1.2 Wavelength Selection .................. 512
        21.3.2 XUV Pulse Profile Characterization ............. 514
        21.3.3 Efficient Detection Schemes for XUV Time- and
               Angle-Resolved Photoemission ................... 515
        21.3.4 Space Charge Effects ........................... 517
   21.4 Review of Pioneering Experiments ...................... 519
        21.4.1 Static Photoelectron Spectroscopy Using High
               Harmonic Sources ............................... 519
        21.4.2 Time-Resolved Photoemission Using XUV Pulses ... 521
               21.4.2.1 Probing Electron Excitations .......... 521
               21.4.2.2 Time-Resolved Valence and Core-Level
                        Spectroscopy .......................... 523
               21.4.2.3 Laser-Assisted Photoelectric Effect
                        From Surfaces ......................... 525
               21.4.2.4 FEL-Based Time-Resolved
                        Photoemission: First Results .......... 528
   21.5 Conclusions and Outlook ............................... 530
   References ................................................. 530
22 Attosecond Time-Resolved Spectroscopy at Surfaces .......... 537
   Adrian L Cavalieri, Ferenc Krausz, Ralph Ernstorfer,
   Reinhard Kienberger, Peter Feulner, Johannes V. Barth,
   and Dietrich Menzel
   22.1 Overview .............................................. 537
   22.2 Examples for Ultrafast Dynamics on Solid Surfaces ..... 538
        22.2.1 Electronic Response ............................ 538
        22.2.2 Charge Transfer Dynamics and Resonant
               Photoemission .................................. 539
        22.2.3 Scattering Experiments and Band Structure
               Buildup ........................................ 542
   22.3 Attosecond Experiments at Surfaces .................... 542
        22.3.1 General Remarks ................................ 542
        22.3.2 Principles of Surface-Related Attosecond
               Metrology ...................................... 543
        22.3.3 Generation of Isolated Attosecond Pulses and
               Principle of Attosecond Spectroscopy of
               Solids ......................................... 543
        22.3.4 Hardware Requirements .......................... 544
        22.3.5 First Experimental Results ..................... 545
        22.3.6 Future Experiments ............................. 549
               22.3.6.1 Improving the Theoretical
                        Description of Streaking Experiments
                        on Solid Targets ...................... 549
               22.3.6.2 Dynamics of Band Structure
                        Formation, Screening, and Magnetic
                        Effects ............................... 549
               22.3.6.3 Charge Transport ...................... 551
   References ................................................. 552
23 Simultaneous Spatial and Temporal Control of Nanooptical
   Fields ..................................................... 555
   Walter Pfeiffer and Martin Aeschlimann ..................... 555
   Introduction ............................................... 555
   23.2 Optical Near-Field Control via Polarization Pulse
        Shaping ............................................... 558
   23.3 Experimental Demonstration of Spatiotemporal
        Control ............................................... 562
        23.3.1 РЕЕМ ........................................... 563
        23.3.2 РЕЕМ as a Near-Field Probe ..................... 564
        23.3.3 Time-Resolved РЕЕМ ............................. 566
        23.3.4 Polarization Pulse Shaping ..................... 569
        23.3.5 Adaptive Optimization of Nanoscale Nonlinear
               Photoemission Patterns ......................... 569
        23.3.6 Simultaneous Spatial and Temporal Control of
               Optical Near Fields ............................ 571
   23.4 Future Prospects and Conclusions ...................... 573
   References ................................................. 574
24 Coherently Controlled Electrical Currents at Surfaces ...... 579
   Jens Güdde, Marcus Rohleder, Torsten Meier, Stephan
   W. Koch, and Ulrich Höfer
   24.1 Introduction .......................................... 579
   24.2 Observation of Coherently Controlled Currents by
        Photoelectron Spectroscopy ............................ 581
   24.3 Modeling of the Coherent Excitation ................... 584
   24.4 Time-Resolved Observation of Current Decay ............ 587
   24.5 Summary ............................................... 588
   References ................................................. 589
25 Ultrabroadband Terahertz Studies of Correlated Electrons ... 593
   Rupert Huber and Alfred Leitenstorfer
   25.1 Introduction .......................................... 593
   25.2 Phase-Locked Few-Cycle THz Pulses: From
        Ultrabroadband to High Intensity ...................... 594
   25.3 Ultrafast Insulator-Metal Transition of VO2 ........... 599
   25.4 THz Coherent Control of Excitons ...................... 605
   25.5 Conclusions and Perspectives .......................... 609
   References ................................................. 610

   Index ...................................................... 615


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:23:52 2019. Размер: 36,778 bytes.
Посещение N 1476 c 18.09.2012