May V. Charge and energy transfer dynamics in molecular systems (Weinheim, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMay V. Charge and energy transfer dynamics in molecular systems / V.May, O.Kühn. - 3rd rev. and enl. ed. - Weinheim: Wiley-VCH, 2011. - xix, 562 p.: ill. - Incl. bibl. ref. -Ind.: p.559-562. - ISBN 978-3-527-40732-3
 

Оглавление / Contents
 
   Preface to the Third Edition .............................. XIII
   Preface to the Second Edition ............................... XV
   Preface to the First Edition .............................. XVII

1  Introduction ................................................. 1
2  Electronic and Vibrational Molecular States .................. 9
   2.1  Introduction ............................................ 9
   2.2  Molecular Schrödinger Equation ......................... 11
   2.3  Born-Oppenheimer Separation ............................ 13
        2.3.1  Born-Oppenheimer Approximation .................. 15
        2.3.2  Some Estimates .................................. 17
   2.4  Electronic Structure Methods ........................... 18
        2.4.1  The Hartree-Fock Equations ...................... 21
        2.4.2  Density Functional Theory ....................... 23
   2.5  Condensed Phase Approaches ............................. 24
        2.5.1  Dielectric Continuum Model ...................... 25
        2.5.2  Explicit Quantum-Classical Solvent Model ........ 31
   2.6  Potential Energy Surfaces .............................. 33
        2.6.1  Harmonic Approximation and Normal Mode
               Analysis ........................................ 35
        2.6.2  Operator Representation of the Normal Mode
               Hamiltonian
        2.6.3  Reaction Paths .................................. 44
   2.7  Diabatic versus Adiabatic Representation of the
        Molecular Hamiltonian .................................. 50
   2.8  Supplement ............................................. 56
        2.8.1  The Hartree-Fock Equations ...................... 56
        2.8.2  Franck-Condon Factors ........................... 59
        2.8.3  The Two-Level System ............................ 60
        2.8.4  The Linear Molecular Chain and the Molecular
               Ring ............................................ 64
   References .................................................. 66
   Further Reading ............................................. 66
3  Dynamics of Isolated and Open Quantum Systems ............... 67
   3.1  Introduction ........................................... 67
   3.2  Time-Dependent Schrödinger Equation .................... 74
        3.2.1  Wave Packets .................................... 74
        3.2.2  The Interaction Representation .................. 78
        3.2.3  Multidimensional Wave Packet Dynamics ........... 80
   3.3  The Golden Rule of Quantum Mechanics ................... 83
        3.3.1  Transition from a Single State into
               a Continuum ..................................... 84
        3.3.2  Transition Rate for a Thermal Ensemble .......... 87
        3.3.3  Green's Function Approach ....................... 91
   3.4  The Nonequilibrium Statistical Operator and the
        Density Matrix ......................................... 94
        3.4.1  The Density Operator ............................ 94
        3.4.2  The Density Matrix .............................. 97
        3.4.3  Equation of Motion for the Density Operator ..... 99
        3.4.4  Wigner Representation of the Density
               Operator ....................................... 100
        3.4.5  Dynamics of Coupled Multilevel Systems in
               a Heat Bath .................................... 103
   3.5  The Reduced Density Operator and the Reduced Density
        Matrix ................................................ 107
        3.5.1  The Reduced Density Operator ................... 107
        3.5.2  Equation of Motion for the Reduced Density
               Operator ....................................... 108
        3.5.3  Mean-Field Approximation ....................... 109
        3.5.4  The Interaction Representation of the Reduced
               Density Operator ............................... 111
        3.5.5  The Projection Superoperator ................... 112
        3.5.6  Second-Order Equation of Motion for the
               Reduced Density Operator ....................... 115
   3.6  The Reservoir Correlation Function .................... 117
        3.6.1  General Properties of Cuv(t) ................... 117
        3.6.2  Harmonic Oscillator Reservoir .................. 120
        3.6.3  The Spectral Density ........................... 122
        3.6.4  Linear Response Theory for the Reservoir ....... 125
        3.6.5  Classical description of Cuv(t) ................ 127
   3.7  Quantum Master Equation ............................... 128
        3.7.1  Markov Approximation ........................... 130
   3.8  Reduced Density Matrix in Energy Representation ....... 134
        3.8.1  The Quantum Master Equation in Energy
               Representation ................................. 134
        3.8.2  Multilevel Redfield Equations .................. 136
        3.8.3  The Secular Approximation ...................... 141
        3.8.4  State Expansion of the System-Reservoir
               Coupling ....................................... 142
        3.8.5  From Coherent to Dissipative Dynamics:
               A Simple Example ............................... 144
        3.8.6  Coordinate and Wigner Representation of the
               Reduced Density Matrix ......................... 150
   3.9  Generalized Rate Equations: The Liouville Space
        Approach .............................................. 153
        3.9.1  Projection Operator Technique .................. 154
        3.9.2  Generalized Rate Equations ..................... 155
        3.9.3  Rate Equations ................................. 157
        3.9.4  The Memory Kernels ............................. 158
        3.9.5  Second-Order Rate Expressions .................. 160
        3.9.6  Fourth-Order Rate Expressions .................. 162
   3.10 The Path Integral Representation of the Density
        Matrix ................................................ 168
   3.11 Quantum-Classical Hybrid Methods ...................... 174
        3.11.1 The Mean-Field Approach ........................ 174
        3.11.2 The Surface Hopping Method ..................... 176
        3.11.3 Partial Wigner Representation as a Quantum-
               Classical Hybrid Method ........................ 179
   3.12 Supplement ............................................ 183
        3.12.1 Different Equations of Motion for the Reduced
               Density Operator
        3.12.2 Limit of Ultrashort Reservoir Correlation
               Time ........................................... 187
        3.12.3 Markov Approximation and the Factorized Part
               of the Reservoir Correlation Function .......... 188
   References ................................................. 189
   Further Reading ............................................ 389
4  Interaction of Molecular Systems with Radiation Fields ..... 191
   4.1  Introduction .......................................... 191
   4.2  Absorption and Emission of Light ...................... 196
        4.2.1  Linear Absorption Coefficient .................. 196
        4.2.2  Dipole-Dipole Correlation Function ............. 197
        4.2.3  Field Quantization and Spontaneous Emission
               of Light ....................................... 199
   4.3  Nonlinear Optical Response ............................ 202
        4.3.1  Nonlinear Response Functions ................... 205
   4.4  Laser Control of Molecular Dynamics ................... 206
        4.4.1  Introduction ................................... 206
        4.4.2  Optimal Control Theory ......................... 212
   References ................................................. 219
   Further Reading ............................................ 220
5  Vibrational Dynamics: Energy Redistribution, Relaxation,
   and Dephasing .............................................. 221
   5.1  Introduction .......................................... 221
   5.2  Intramolecular Vibrational Energy Redistribution ...... 225
        5.2.1  Zeroth-Order Basis ............................. 225
        5.2.2  Golden Rule and Beyond ......................... 228
   5.3  Intermolecular Vibrational Energy Relaxation .......... 232
        5.3.1  Diatomic Molecule in Solid State Environment ... 233
        5.3.2  Diatomic Molecules in Polyatomic Solution ...... 238
   5.4  Polyatomic Molecules in Solution ...................... 243
        5.4.1  System-Bath Hamiltonian ........................ 243
        5.4.2  Higher-Order Multiquantum Relaxation ........... 245
   5.5  Quantum-Classical Approaches to Relaxation and
        Dephasing ............................................. 250
   5.6  Supplement ............................................ 253
        5.6.1  Coherent Wave Packet Motion in a Harmonic
               Oscillator ..................................... 253
   References ................................................. 254
   Further Reading ............................................ 254
6  Intramolecular Electronic Transitions ...................... 255
   6.1  Introduction .......................................... 255
        6.1.1  Optical Transitions ............................ 256
        6.1.2  Internal Conversion Processes .................. 261
   6.2  The Optical Absorption Coefficient .................... 262
        6.2.1  Golden Rule Formulation ........................ 262
        6.2.2  The Density of States .......................... 265
        6.2.3  Absorption Coefficient for Harmonic Potential
               Energy Surfaces ................................ 268
        6.2.4  Absorption Lineshape and Spectral Density ...... 271
   6.3  Absorption Coefficient and Dipole-Dipole Correlation
        Function .............................................. 276
        6.3.1  Absorption Coefficient and Wave Packet
               Propagation .................................... 276
        6.3.2  Cumulant Expansion of the Absorption
               Coefficient .................................... 281
        6.3.3  Absorption Coefficient and Reduced Density
               Operator Propagation ........................... 282
        6.3.4  Mixed Quantum-Classical Computation of the
               Absorption Coefficient ......................... 285
   6.4  The Emission Spectrum ................................. 287
   6.5  Optical Preparation of an Excited Electronic State .... 288
        6.5.1  Wave Function Formulation ...................... 289
        6.5.2  Density Matrix Formulation ..................... 293
   6.6  Pump-Probe Spectroscopy ............................... 294
   6.7  Internal Conversion Dynamics .......................... 298
        6.7.1  The Internal Conversion Rate ................... 298
        6.7.2  Ultrafast Internal Conversion .................. 300
   6.8  Supplement ............................................ 302
        6.8.1  Absorption Coefficient for Displaced Harmonic
               Oscillators .................................... 302
        6.8.2  Cumulant Expansion for Harmonic Potential
               Energy Surfaces ................................ 305
   References ................................................. 307
   Further Reading ............................................ 307
7  Electron Transfer .......................................... 309
   7.1  Classification of Electron Transfer Reactions ......... 309
   7.2  Theoretical Models for Electron Transfer Systems ...... 321
        7.2.1  The Electron Transfer Hamiltonian .............. 322
        7.2.2  The Electron-Vibrational Hamiltonian of
               a Donor-Acceptor Complex ....................... 327
        7.2.3  Electron-Vibrational State Representation of
               the Hamiltonian ................................ 331
   7.3  Regimes of Electron Transfer .......................... 332
        7.3.1  Landau-Zener Theory of Electron Transfer ....... 337
   7.4  Nonadiabatic Electron Transfer in a Donor-Acceptor
        Complex ............................................... 341
        7.4.1  High-Temperature Case .......................... 342
        7.4.2  High-Temperature Case: Two Independent Sets
               of Vibrational Coordinates ..................... 346
        7.4.3  Low-Temperature Case: Nuclear Tunneling ........ 349
        7.4.4  The Mixed Quantum-Classical Case ............... 352
        7.4.5  Description of the Mixed Quantum-Classical
               Case by a Spectral Density ..................... 354
   7.5  Nonadiabatic Electron Transfer in Polar Solvents ...... 355
        7.5.1  The Solvent Polarization Field and the
               Dielectric Function ............................ 357
        7.5.2  The Free Energy of the Solvent ................. 360
        7.5.3  The Rate of Nonadiabatic Electron Transfer in
               Polar Solvents ................................. 363
   7.6  Bridge-Mediated Electron Transfer ..................... 367
        7.6.1  The Superexchange Mechanism .................... 369
        7.6.2  Electron Transfer through Arbitrary Long
               Bridges ........................................ 371
   7.7  Nonequilibrium Quantum Statistical Description of
        Electron Transfer ..................................... 375
        7.7.1  Unified Description of Electron Transfer in
               a Donor-Bridge-Acceptor System ................. 376
        7.7.2  Transition to the Adiabatic Electron
               Transfer ....................................... 379
   7.8  Heterogeneous Electron Transfer ....................... 380
        7.8.1  Nonadiabatic Charge Injection into the Solid
               State Described in a Single-Electron Model ..... 381
        7.8.2  Nonadiabatic Electron Transfer from the Solid
               State to the Molecule .......................... 385
        7.8.3  Ultrafast Photoinduced Heterogeneous Electron
               Transfer from a Molecule into
               a Semiconductor ................................ 388
   7.9  Charge Transmission through Single Molecules .......... 390
        7.9.1  Inelastic Charge Transmission .................. 393
        7.9.2  Elastic Charge Transmission .................... 396
   7.10 Photoinduced Ultrafast Electron Transfer .............. 402
        7.10.1 Quantum Master Equation for Electron Transfer
               Reactions ...................................... 408
        7.10.2 Rate Expressions ............................... 412
   7.11  Controlling Photoinduced Electron Transfer ........... 414
   7.12  Supplement ........................................... 417
        7.12.1 Landau-Zener Transition Amplitude .............. 417
        7.12.2 The Multimode Marcus Formula ................... 419
        7.12.3 The Free Energy Functional of the Solvent
               Polarization ................................... 420
        7.12.4 Second-Order Electron Transfer Rate ............ 423
        7.12.5 Fourth-Order Donor-Acceptor Transition Rate .... 425
        7.12.6 Rate of Elastic Charge Transmission through
               a Single Molecule .............................. 428
    References ................................................ 431
   Further Reading ............................................ 432
8  Proton Transfer ............................................ 435
   8.1  Introduction .......................................... 435
   8.2  Proton Transfer Hamiltonian ........................... 440
        8.2.1  Hydrogen Bonds ................................. 440
        8.2.2  Reaction Surface Hamiltonian for
               Intramolecular Proton Transfer ................. 444
        8.2.3  Tunneling Splittings ........................... 445
        8.2.4  Proton Transfer Hamiltonian in the Condensed
               Phase .......................................... 450
   8.3  Adiabatic Proton Transfer ............................. 453
   8.4  Nonadiabatic Proton Transfer .......................... 456
   8.5  The Intermediate Regime: From Quantum to Quantum-
        Classical Hybrid Methods .............................. 458
        8.5.1  Multidimensional Wave Packet Dynamics .......... 458
        8.5.2  Surface Hopping ................................ 461
   8.6  Infrared Laser-Pulse Control of Proton Transfer ....... 463
   References ................................................. 466
   Further Reading ............................................ 466
9  Excitation Energy Transfer ................................. 467
   9.1  Introduction .......................................... 467
   9.2  The Aggregate Hamiltonian ............................. 474
        9.2.1  The Intermolecular Coulomb Interaction ......... 477
        9.2.2  The Two-Level Model ............................ 481
        9.2.3  Single and Double Excitations of the
               Aggregate ...................................... 484
        9.2.4  Introduction of Delocalized Exciton States ..... 490
   9.3  Exciton-Vibrational Interaction ....................... 494
        9.3.1  Exclusive Coupling to Intramolecular
               Vibrations ..................................... 495
        9.3.2  Coupling to Aggregate Normal-Mode Vibrations ... 495
        9.3.3  Coupling to Intramolecular Vibrations and
               Aggregate Normal-Mode Vibrations ............... 497
        9.3.4  Exciton-Vibrational Hamiltonian and Excitonic
               Potential Energy Surfaces ...................... 498
   9.4  Regimes of Excitation Energy Transfer ................. 500
        9.4.1  Quantum Statistical Approaches to Excitation
               Energy Transfer ................................ 501
   9.5  Transfer Dynamics in the Case of Weak Excitonic
        Coupling: Förster Theory .............................. 503
        9.5.1  The Transfer Rate .............................. 503
        9.5.2  The Förster Rate ............................... 505
        9.5.3  Nonequilibrium Quantum Statistical
               Description of Förster Transfer ................ 508
   9.6  Transfer Dynamics in the Case of Strong Excitonic
        Coupling .............................................. 514
        9.6.1  Rate Equations for Exciton Dynamics ............ 515
        9.6.2  Density Matrix Equations for Exciton
               Dynamics ....................................... 516
        9.6.3  Site Representation ............................ 519
        9.6.4  Excitation Energy Transfer among Different
               Aggregates ..................................... 521
        9.6.5  Exciton Transfer in the Case of Strong
               Exciton-Vibrational Coupling ................... 522
   9.7  The Aggregate Absorption Coefficient .................. 526
        9.7.1  Case of no Exciton-Vibrational Coupling ........ 529
        9.7.2  Inclusion of Exciton-Vibrational Coupling ...... 532
   9.8  Excitation Energy Transfer Including Charge Transfer
        States ................................................ 536
   9.9  Exciton-Exciton Annihilation .......................... 540
        9.9.1  Three-Level Description of the Molecules in
               the Aggregate .................................. 542
        9.9.2  The Rate of Exciton-Exciton Annihilation ....... 543
   9.10 Supplement ............................................ 544
        9.10.1 Photon-Mediated Long-Range Excitation Energy
               Transfer ....................................... 544
        9.10.2 Fourth-Order Rate of Two-Electron-Transfer-
               Assisted EET ................................... 553
   References ................................................. 557
   Further Reading ............................................ 558

   Index ...................................................... 559


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:23:52 2019. Размер: 23,966 bytes.
Посещение N 1565 c 18.09.2012