Murakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions (Oxford, 2002). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMurakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions. - Oxford: Elsevier, 2002. - xiv, 369 p.: ill. - Incl. bibl. ref. - Ind.: p.359-369. - ISBN 0-08-044064-9
 

Оглавление / Contents
 
1  Mechanism of Fatigue in the Absence of Defects and
   Inclusions ................................................... 1
   1.1  What is a Fatigue Limit? ................................ 1
        1.1.1  Steels ........................................... 1
        1.1.2  Nonferrous Metals ................................ 4
   1.2  Relationship between Stalie Strength and Fatigue
        Strength ................................................ 5
   1.3  References .............................................. 8
2  Stress Concentration ........................................ 11
   2.1  Stress Concentrations at Holes and Notches ............. 11
   2.2  Stress Concentration at a Crack ........................ 15
        2.2.1  'area' as a New Geometrical Parameter ........... 16
        2.2.2  Effective 'area' for Particular Cases ........... 17
        2.2.3  Cracks at Stress Concentrations ................. 21
        2.2.4  Interaction between Two Cracks .................. 21
        2.2.5  Interaction between a Crack and a Free
               Surface ......................................... 22
   2.3  References ............................................. 24
3  Notch Effect and Size Effect ................................ 25
   3.1  Notch Effect ........................................... 25
        3.1.1  Effect of Stress Distribution at Notch Roots .... 25
        3.1.2  Non-Propagating Cracks at Notch Roots ........... 28
   3.2  Size Effect ............................................ 31
   3.3  References ............................................. 32
4  Effect of Size and Geometry of Small Defects on the
   Fatigue Limit ............................................... 35
   4.1  Introduction ........................................... 35
   4.2  Influence of Extremely Shallow Notches or Extremely
        Short Cracks ........................................... 35
   4.3  Fatigue Tests on Specimens Containing Small
        Artificial Defects ..................................... 37
        4.3.1  Effect of Small Artificial Holes Having the
               Diameter d Equal to the Depth h ................. 37
        4.3.2  Effect of Small Artificial Holes Having
               Different Diameters and Depths .................. 42
   4.4  Critical Stress for Fatigue Crack Initiation from
        a Small Crack .......................................... 47
   4.5  References ............................................. 54
5  Effect of Hardness Hv on Fatigue Limits of Materials
   Containing Defects, and Fatigue Limit Prediction
   Equations ................................................... 57
   5.1  Relationship between ΔKth and the Geometrieal
        Parameter, √area ....................................... 57
   5.2  Material Parameter Hv which Controls Fatigue Limits .... 60
   5.3  Application of the Prediction Equations ................ 62
   5.4  Limits of Applicability of the Prediction Equations:
        Eqs. 5.4 and 5.5 ....................................... 66
   5.5  The Importance of the Finding that Specimens with an
        Identical Value of √area for Small Holes or Small
        Cracks Have Identical Fatigue Limits: When the Values
        of √area for a Small Hole and a Small Crack are
        Identical, are the Fatigue Limits for Specimens
        Containing these Two Defect Types Really Identical? .... 66
   5.6  References ............................................. 71
6  Effects of Nonmetallic Inclusions on Fatigue Strength ....... 75
   6.1  Review of Existing Studies and Current Problems ........ 75
        6.1.1  Correlation of Material Cleanliness and
               Inclusion Rating with Fatigue Strength .......... 75
        6.1.2  Size and Location of Inclusions and Fatigue
               Strength ........................................ 77
        6.1.3  Mechanical Properties of Microstructure and
               Fatigue Strength ................................ 78
        6.1.4  Influence of Nonmetallic Inclusions Related to
               the Direction and Mode of Loading ............... 81
        6.1.5  Inclusion Problem Factors ....................... 82
   6.2  Similarity of Effects of Nonmetallic Inclusions and
        Small Defects and a Unifying Interpretation ............ 85
   6.3  Quantitative Evaluation of Effects of Nonmetallic
        Inclusions: Strength Prediction Equations and their
        Application ............................................ 88
   6.4  Causes of Fatigue Strength Scatter for High Strength
        Steels and Scatter Band Prediction ..................... 94
   6.5  Effect of Mean Stress .................................. 99
        6.5.1  Quantitative Evaluation of the Mean Stress
               Effect on Fatigue of Materials Containing
               Small Defects .................................. 100
        6.5.2  Effects of Both Nonmetallic Inclusions and
               Mean Stress in Hard Steels ..................... 104
        6.5.3  Prediction of the Lower Bound of Scatter and
               its Application ................................ 108
   6.6  Estimation of Maximum Inclusion Size √areamaх by
        Microscopic Examination of a Microstructure ........... 110
        6.6.1  Measurement of √areamax for Largest
               Inclusions by Optical Microscopy ............... 112
        6.6.2  True and Apparent Maximum Sizes of
               Inclusions ..................................... 114
        6.6.3  Two-dimensional (2D) Prediction Method for
               Largest Inclusion Size and Evaluation by
               Numerical Simulation ........................... 118
   6.7  References ............................................ 122
7  Bearing Steels ............................................. 129
   7.1  Influence of Steel Processing ......................... 130
   7.2  Inclusions at Fatigue Fracture Origins ................ 130
   7.3  Cleanliness and Fatigue Properties .................... 133
        7.3.1  Total Oxygen (O) Content ....................... 136
        7.3.2  Ti Content ..................................... 136
        7.3.3  Ca Content ..................................... 136
        7.3.4  Sulphur (S) Content ............................ 137
   7.4  Fatigue Strength of Super Clean Bearing Steels and
        the Role of Nonmetallic Inclusions .................... 139
   7.5  Tessellated Stresses Associated with Inclusions:
        Thermal Residual Stresses around Inclusions ........... 142
   7.6  What Happens to the Fatigue Limit of Bearing Steels
        without Nonmetallic Inclusions? — Fatigue Strength
        of Electron Beam Remelted Super Clean Bearing Steel ... 148
        7.6.1  Material and Experimental Procedure ............ 148
        7.6.2  Inclusion Rating Based on the Statistics of
               Extremes ....................................... 152
        7.6.3  Fatigue Test Results ........................... 153
        7.6.4  The True Character of Small Inhomogeneities
               at Fracture Origins ............................ 154
   7.7  References ............................................ 159
8  Spring Steels .............................................. 163
   8.1  Spring Steels (SUP12) for Automotive Components ....... 163
   8.2  Explicit Analysis of Nonmetallic Inclusions, Shot
        Pcening, Deearburised Layers, Surface Roughness, and
        Corrosion Pits in Automobile Suspension Spring
        Steels ................................................ 168
        8.2.1  Materials and Experimental Procedure ........... 169
        8.2.2  Interaction of Factors Influencing Fatigue
               Strength ....................................... 172
               8.2.2.1  Effect of Shot Peening ................ 173
               8.2.2.2  Effects of Nonmetallic Inclusions
                        and Corrosion Pits .................... 178
               8.2.2.3  Prediction of Scatter in Fatigue
                        Strength using the Statistics of
                        Extreme ............................... 180
   8.3  References ............................................ 182
9  Tool Steels: Effect of Carbides ............................ 185
   9.1  Low Temperature Forging and Microstructure ............ 185
   9.2  Static Strength and Fatigue Strength .................. 187
   9.3  Relationship Between Carbide Size and Fatigue
        Strength .............................................. 190
   9.4  References ............................................ 192
10 Effects of Shape and Size of Artificially Introduced
   Alumina Particles on 1,5Ni-Cr-Mo (En24) Steel .............. 193
   10.1 Artificially Introduced Alumina Particles with
        Controlled Sizes and Shapes, Speci mens, and Test
        Stress ................................................ 193
   10.2 Rotating Bending Fatigue Tests without Shot Peening ... 195
   10.3 Rotating Bending Fatigue Tests on Shot-Peened
        Specimens ............................................. 199
   10.4 Tension Compression Fatigue Tests ..................... 202
   10.5 References ............................................ 203
11 Nodular Cast Iron .......................................... 205
   11.1 Introduction .......................................... 205
   11.2 Fatigue Strength Prediction of Nodular Cast Irons by
        Considering Graphite Nodules to be Equivalent to
        Small Defects ......................................... 206
   11.3 References ............................................ 215
12 Influence of Si-Phase on Fatigue Properties of Aluminium
   Alloys ..................................................... 217
   12.1 Materials, Specimens and Experimental Procedure ....... 217
   12.2 Fatigue Mechanism ..................................... 217
        12.2.1 Continuously Cast Material ..................... 220
        12.2.2 Extruded Material .............................. 221
        12.2.3 Fatigue Behaviour of Specimens Containing an
               Artificial Hole ................................ 225
   12.3 Mechanisms of Ultralong Fatigue Life .................. 227
   12.4 Low-Cycle Fatigue ..................................... 231
        12.4.1 Fatigue Mechanism .............................. 231
        12.4.2 Continuously Cast Material ..................... 232
        12.4.3 Extruded Material .............................. 232
        12.4.4 Comparison with High-Cycle Fatigue ............. 232
        12.4.5 Cyclic Property Characterisation ............... 235
   12.5 Summary ............................................... 238
   12.6 References ............................................ 239
13 Ti Alloys .................................................. 241
   13.1 References ............................................ 244
14 Torsional Fatigue .......................................... 247
   14.1 Introduction .......................................... 247
   14.2 Effect of Small Artificial Defects on Torsional
        Fatigue Strength ...................................... 248
        14.2.1 Ratio of Torsional Fatigue Strength to
               Bending Fatigue Strength ....................... 248
        14.2.2 The Slate of Non-Propagating Cracks at the
               Torsional Fatigue Limit ........................ 253
        14.2.3 Torsional Fatigue of High Carbon Cr Bearing
                Steel ......................................... 256
   14.3 Effects of Small Cracks ............................... 258
        14.3.1 Material and Test Procedures ................... 261
        14.3.2 Fatigue Test Results ........................... 262
        14.3.3 Crack Initiation and Propagation from
               Precracks ...................................... 263
        14.3.4 Fracture Mechanics Evaluation of the Effect
               of Small Cracks on Torsional Fatigue ........... 266
        14.3.5 Prediction of Torsional Fatigue Limit by the
               √area Parameter Model .......................... 268
   14.4 References ............................................ 270
15 The Mechanism of Fatigue Failure of Steels in the
   Ultralong Life Regime of N > 107 Cycles .................... 273
   15.1 Mechanism of Elimination of Conventional Fatigue
        Limit: Influence of Hydrogen Trapped by Inclusions .... 273
        15.1.1 Method of Data Analysis ........................ 274
        15.1.2 Material, Specimens and Experimental Method .... 275
        15.1.3 Distribution of Residual Stress and Hardness ... 276
        15.1.4 Fracture Origins ............................... 277
        15.1.5 S-N Curves ..................................... 277
        15.1.6 Details of Fracture Surface Morphology and
               Influence of Hydrogen .......................... 279
   15.2 Fractographic Investigation ........................... 291
        15.2.1 Measurement of Surface Roughness ............... 292
        15.2.2 The Outer Border of a Fish Eye ................. 292
        15.2.3 Crack Growth Rate and Fatigue Life ............. 298
   15.3 Current Conclusions ................................... 299
   15.4 References ............................................ 302
16 Effect of Surface Roughness on Fatigue Strength ............ 305
   16.1 Introduction .......................................... 305
   16.2 Material and Experimental Procedure ................... 306
        16.2.1 Material ....................................... 306
        16.2.2 Introduction of Artificial Surface Roughness
               and of a Single Notch .......................... 306
        16.2.3 Measurement of Hardness and Surface
               Roughness ...................................... 308
   16.3 Results and Discussion ................................ 312
        16.3.1 Results of Fatigue Tests ....................... 312
        16.3.2 Quantitative Evaluation by the √area
               Parameter Model ................................ 312
               16.3.2.1 Geometrical Parameter to Evaluate
                        the Effect of Surface Roughness on
                        Fatigue Strength ...................... 312
               16.3.2.2 Evaluation of Equivalent Defect Size
                        for Roughness √areaR .................. 315
   16.4 Guidance for Fatigue Design Engineers ................. 319
   16.5 References ............................................ 319

Appendix A.  Instructions for a New Method of Inclusion
   Rating and Correlations with the Fatigue Limit ............. 321
   A1  Background of Extreme Value Theory and Data Analysis ... 323
   A2  Simple Procedure for Extreme Value Inclusion Rating .... 325
   A3  Prediction of the Maximum Inclusion .................... 329
   A4  Prediction of √areamax of Inclusions Expected to be
       Contained in a Volume .................................. 331
   A5  Method for Estimating the Prediction Volume
       (or Control Volume) .................................... 333
   A6  Prediction of the Lower Limit (Lower Bound) of the
       Fatigue Strength ....................................... 337
   A7  The Comparison of Predicted Lower Bound of the
       Scatter in Fatigue Strength of a Medium Carbon Steel
       with Rotating Bending Fatigue Test Results ............. 339
   A8  Optimisation of Extreme Value Inclusion Rating
       (EVIR) ................................................. 345
   A9  Recent Developments in Statistical Analysis and its
       Perspectives ........................................... 347
   A10 References ............................................. 349

Appendix B  Database of Statistics of Extreme Values of
            Inclusion Size √areamax ............................ 351
Appendix C  Probability Sheets of Statistics of Extremes ...... 357

Index ......................................................... 359


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:02 2019. Размер: 20,142 bytes.
Посещение N 1883 c 16.10.2012