Demtroder W. Atoms, molecules and photons: an introduction to atomic-, molecular- and quantum physics (Berlin, Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDemtröder W. Atoms, molecules and photons: an introduction to atomic-, molecular- and quantum physics. - 2nd ed. - Berlin, Heidelberg: Springer, 2010. - vii, 589 p.: ill. - (Graduate texts in physics). - Ref.: p.571-589. - Sub. ind.: p.581-589. - ISBN 978-3-642-10297-4
 

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  Contents and Importance of Atomic Physics ............... 1
   1.2  Molecules: Building Blocks of Nature .................... 3
   1.3  Survey on the Concept of this Textbook .................. 4
2  The Concept of the Atom ...................................... 7
   2.1  Historical Development .................................. 7
   2.2  Experimental and Theoretical Proofs for the Existence
        of Atoms ................................................ 9
        2.2.1  Dalton's Law of Constant Proportions ............. 9
        2.2.2  The Law of Gay-Lussac and the Definition of the
               Mole ............................................ 11
        2.2.3  Experimental Methods for the Determination
               of Avogadro's Constant .......................... 12
        2.2.4  The Importance of Kinetic Gas Theory for the
               Concept of Atoms ................................ 17
   2.3  Can One See Atoms? ..................................... 20
        2.3.1  Brownian Motion ................................. 20
        2.3.2  Cloud Chamber ................................... 24
        2.3.3  Microscopes with Atomic Resolution .............. 24
   2.4  The Size of Atoms ...................................... 29
        2.4.1  The Size of Atoms in the Van der Waals
               Equation ........................................ 29
        2.4.2  Atomic Size Estimation from Transport
               Coefficients .................................... 29
        2.4.3  Atomic Volumes from X-Ray Diffraction ........... 31
        2.4.4  Comparison of the Different Methods ............. 32
   2.5  The Electric Structure of Atoms ........................ 33
        2.5.1  Cathode Rays and Kanalstrahlen .................. 34
        2.5.2  Measurement of the Elementary Charge e .......... 35
        2.5.3  How to Produce Free Electrons ................... 37
        2.5.4  Generation of Free Ions ......................... 39
        2.5.5  The Mass of the Electron ........................ 41
        2.5.6  How Neutral is the Atom? ........................ 44
   2.6  Electron and Ion Optics ................................ 45
        2.6.1  Refraction of Electron Beams .................... 45
        2.6.2  Electron Optics in Axially Symmetric Fields ..... 47
        2.6.3  Electrostatic Electron Lenses ................... 49
        2.6.4  Magnetic Lenses ................................. 50
        2.6.5  Applications of Electron and Ion Optics ......... 52
   2.7  Atomic Masses and Mass Spectrometers ................... 53
        2.7.1  J.J. Thomson's Parabola Spectrograph ............ 54
        2.7.2  Velocity-Independent Focusing ................... 55
        2.7.3  Focusing of Ions with Different Angles
               of Incidence .................................... 57
        2.7.4  Mass Spectrometer with Double Focusing .......... 57
        2.7.5  Time-of-Flight Mass Spectrometer ................ 58
        2.7.6  Quadrupole Mass Spectrometer .................... 61
        2.7.7  Ion-Cyclotron-Resonance Spectrometer ............ 63
        2.7.8  Isotopes ........................................ 64
   2.8  The Structure of Atoms ................................. 65
        2.8.1  Integral and Differential Cross Sections ........ 65
        2.8.2  Basic Concepts of Classical Scattering .......... 66
        2.8.3  Determination of the Charge Distribution
               within the Atom from Scattering Experiments ..... 70
        2.8.4  Thomson's Atomic Model .......................... 71
        2.8.5  The Rutherford Atomic Model ..................... 73
        2.8.6  Rutherford's Scattering Formula ................. 74
   Summary ..................................................... 77
   Problems .................................................... 79
3  Development of Quantum Physics .............................. 81
   3.1  Experimental Hints to the Particle Character of
        Electromagnetic Radiation .............................. 81
        3.1.1  Blackbody Radiation ............................. 82
        3.1.2  Cavity Modes .................................... 84
        3.1.3  Planck's Radiation Law .......................... 86
        3.1.4  Wien's Law ...................................... 88
        3.1.5  Stefan-Boltzmann's Radiation Law ................ 88
        3.1.6  Photoelectric Effect ............................ 89
        3.1.7  Compton Effect .................................. 91
        3.1.8  Properties of Photons ........................... 93
        3.1.9  Photons in Gravitational Fields ................. 94
        3.1.10 Wave and Particle Aspects of Light .............. 95
   3.2  Wave Properties of Particles ........................... 97
        3.2.1  De Broglie Wavelength and Electron
               Diffraction ..................................... 97
        3.2.2  Diffraction and Interference of Atoms ........... 98
        3.2.3  Bragg Reflection and the Neutron
               Spectrometer ................................... 100
        3.2.4  Neutron and Atom Interferometry ................ 100
        3.2.5  Application of Particle Waves .................. 101
   3.3  Matter Waves and Wave Functions ....................... 102
        3.3.1  Wave Packets ................................... 103
        3.3.2  The Statistical Interpretation of Wave
               Functions ...................................... 105
        3.3.3  Heisenberg's Uncertainty Principle ............. 106
        3.3.4  Dispersion of the Wave Packet .................. 109
        3.3.5  Uncertainty Relation for Energy and Time ....... 110
   3.4  The Quantum Structure of Atoms ........................ 111
        3.4.1  Atomic Spectra ................................. 112
        3.4.2  Bohr's Atomic Model ............................ 113
        3.4.3  The Stability of Atoms ......................... 117
        3.4.4  Franck-Hertz Experiment ........................ 118
   3.5  What are the Differences Between Classical and
        Quantum Physics? ...................................... 120
        3.5.1  Classical Particle Paths Versus Probability
               Densities in Quantum Physics ................... 120
        3.5.2  Interference Phenomena with Light Waves and
               Matter Waves ................................... 121
        3.5.3  The Effect of the Measuring Process ............ 123
        3.5.4  The Importance of Quantum Physics for our
               Concept of Nature .............................. 124
   Summary .................................................... 125
   Problems ................................................... 127
4  Basic Concepts of Quantum Mechanics ........................ 129
   4.1  The Schrodinger Equation .............................. 129
   4.2  Some Examples ......................................... 131
        4.2.1  The Free Particle .............................. 131
        4.2.2  Potential Barrier .............................. 132
        4.2.3  Tunnel Effect .................................. 135
        4.2.4  Particle in a Potential Box .................... 138
        4.2.5  Harmonic Oscillator ............................ 141
   4.3  Two-and Three-Dimensional Problems .................... 144
        4.3.1  Particle in a Two-dimensional Box .............. 144
        4.3.2  Particle in a Spherically Symmetric
               Potential ...................................... 145
   4.4  Expectation Values and Operators ...................... 149
        4.4.1  Operators and Eigenvalues ...................... 150
        4.4.2  Angular Momentum in Quantum Mechanics .......... 152
   Summary .................................................... 155
   Problems ................................................... 157
5  The Hydrogen Atom .......................................... 159
   5.1  Schrodinger Equation for One-electron Systems ......... 159
        5.1.1  Separation of the Center of Mass and Relative
               Motion ......................................... 159
        5.1.2  Solution of the Radial Equation ................ 161
        5.1.3  Quantum Numbers and Wave Functions of the H
               Atom ........................................... 163
        5.1.4  Spatial Distributions and Expectation Values
               of the Electron in Different Quantum States .... 166
   5.2  The Normal Zeeman Effect .............................. 168
   5.3  Comparison of Schrodinger Theory with Experimental
        Results ............................................... 170
   5.4  Relativistic Correction of Energy Terms ............... 172
   5.5  The Electron Spin ..................................... 174
        5.5.1  The Stern-Gerlach Experiment ................... 175
        5.5.2  Experimental Confirmation of Electron Spin ..... 176
        5.5.3  Einstein-de Haas Effect ........................ 177
        5.5.4  Spin-Orbit Coupling and Fine Structure ......... 178
        5.5.5  Anomalous Zeeman Effect ........................ 181
   5.6  Hyperfine Structure ................................... 184
        5.6.1  Basic Considerations ........................... 184
        5.6.2  Fermi-contact Interaction ...................... 186
        5.6.3  Magnetic Dipole-Dipole Interaction ............. 187
        5.6.4  Zeeman Effect of Hyperfine Structure Levels .... 187
   5.7  Complete Description of the Hydrogen Atom ............. 188
        5.7.1  Total Wave Function and Quantum Numbers ........ 188
        5.7.2  Term Assignment and Level Scheme ............... 188
        5.7.3  Lamb Shift ..................................... 191
   5.8  Correspondence Principle .............................. 194
   5.9  The Electron Model and its Problems ................... 195
   Summary .................................................... 198
   Problems ................................................... 200
6  Atoms with More Than One Electron .......................... 201
   6.1  The Helium Atom ....................................... 201
        6.1.1  Approximation Models ........................... 202
        6.1.2  Symmetry of the Wave Function .................. 203
        6.1.3  Consideration of the Electron Spin ............. 204
        6.1.4  The Pauli Principle ............................ 205
        6.1.5  Energy Levels of the Helium Atom ............... 206
        6.1.6  Helium Spectrum ................................ 208
   6.2  Building-up Principle of the Electron Shell for
        Larger Atoms .......................................... 209
        6.2.1  The Model of Electron Shells ................... 209
        6.2.2  Successive Building-up of Electron Shells
               for Atoms with Increasing Nuclear Charge ....... 210
        6.2.3  Atomic Volumes and Ionization Energies ......... 212
        6.2.4  The Periodic System of the Elements ............ 216
   6.3  Alkali Atoms .......................................... 218
   6.4  Theoretical Models for Multielectron Atoms ............ 221
        6.4.1  The Model of Independent Electrons ............. 221
        6.4.2  The Hartree Method ............................. 222
        6.4.3  The Hartree-Fock Method ........................ 224
        6.4.4  Configuration Interaction ...................... 224
   6.5  Electron Configurations and Couplings of Angular
        Momenta ............................................... 224
        6.5.1  Coupling Schemes for Electronic Angular
               Momenta ........................................ 224
        6.5.2  Electron Configuration and Atomic States ....... 229
   6.6  Excited Atomic States ................................. 231
        6.6.1  Single Electron Excitation ..................... 232
        6.6.2  Simultaneous Excitation of Two Electrons ....... 232
        6.6.3  Inner-Shell Excitation and the Auger Process ... 233
        6.6.4  Rydberg States ................................. 234
        6.6.5  Planetary Atoms ................................ 236
   6.7  Exotic Atoms .......................................... 237
        6.7.1  Muonic Atoms ................................... 238
        6.7.2  Pionic and Kaonic Atoms ........................ 239
        6.7.3  Anti-hydrogen Atoms and Other Anti-atoms ....... 240
        6.7.4  Positronium and Muonium ........................ 241
   Summary .................................................... 243
   Problems ................................................... 245
7  Emission and Absorption of Electromagnetic Radiation by
   Atoms ...................................................... 248
   7.1  Transition Probabilities .............................. 248
        7.1.1  Induced and Spontaneous Transitions,
               Einstein Coefficients .......................... 248
        7.1.2  Transition Probabilities, Einstein
               Coefficients and Matrix Elements ............... 250
        7.1.3  Transition Probabilities for Absorption
               and Induced Emission ........................... 253
   7.2  Selection Rules ....................................... 253
        7.2.1  Selection Rules for Spontaneous Emission ....... 253
        7.2.2  Selection Rules for the Magnetic Quantum
               Number ......................................... 254
        7.2.3  Parity Selection Rules ......................... 255
        7.2.4  Selection Rules for Induced Absorption and
               Emission ....................................... 256
        7.2.5  Selection Rules for the Spin Quantum Number .... 256
        7.2.6  Higher Order Multipole Transitions ............. 257
        7.2.7  Magnetic Dipole Transitions .................... 259
        7.2.8  Two-Photon-Transitions ......................... 259
   7.3  Lifetimes of Excited States ........................... 260
   7.4  Line Profiles of Spectral Lines ....................... 261
        7.4.1  Natural Linewidth .............................. 262
        7.4.2  Doppler Broadening ............................. 264
        7.4.3  Collision Broadening ........................... 267
   7.5  X-Rays ................................................ 270
        7.5.1  Bremsstrahlung ................................. 271
        7.5.2  Characteristic X-Ray-Radiation ................. 272
        7.5.3  Scattering and Absorption of X-Rays ............ 273
        7.5.4  X-ray Fluorescence ............................. 278
        7.5.5  Measurements of X-Ray Wavelengths .............. 278
   7.6  Continuous Absorption and Emission Spectra ............ 280
        7.6.1  Photoionization ................................ 281
        7.6.2  Recombination Radiation ........................ 284
        Summary ............................................... 286
        Problems .............................................. 287
8  Lasers ..................................................... 289
   8.1  Physical Principles ................................... 289
        8.1.1  Threshold Condition ............................ 290
        8.1.2  Generation of Population Inversion ............. 292
        8.1.3  The Frequency Spectrum of Induced Emission ..... 295
   8.2  Optical Resonators .................................... 295
        8.2.1  The Quality Factor of Resonators ............... 295
        8.2.2  Open Optical Resonators ........................ 296
        8.2.3  Modes of Open Resonators ....................... 297
        8.2.4  Diffraction Losses of Open Resonators .......... 300
        8.2.5  The Frequency Spectrum of Optical Resonators ... 301
   8.3  Single Mode Lasers .................................... 301
   8.4  Different Types of Lasers ............................. 304
        8.4.1  Solid-state Lasers ............................. 305
        8.4.2  Semiconductor Lasers ........................... 307
        8.4.3  Dye Lasers ..................................... 308
        8.4.4  Gas Lasers ..................................... 310
   8.5  Nonlinear Optics ...................................... 313
        8.5.1  Optical Frequency Doubling ..................... 314
        8.5.2  Phase Matching ................................. 314
        8.5.3  Optical Frequency Mixing ....................... 316
   8.6  Generation of Short Laser Pulses ...................... 316
        8.6.1  Q-Switched Lasers .............................. 316
        8.6.2  Mode-Locking of Lasers ......................... 318
        8.6.3  Optical Pulse Compression ...................... 321
        8.6.4  Measurements of Ultrashort Optical Pulses ...... 322
        Summary ............................................... 324
        Problems .............................................. 324
9  Diatomic Molecules ......................................... 327
   9.1  The Molecular Ion ..................................... 327
        9.1.1  The Exact Solution for the Rigid H2+
               Molecule ....................................... 328
        9.1.2  Molecular Orbitals and LCAO Approximations ..... 331
        9.1.3  Improvements to the LCAO ansatz ................ 334
   9.2  The H2 Molecule ....................................... 335
        9.2.1  Molecular Orbital Approximation ................ 336
        9.2.2  The Heitler-London Method ...................... 337
        9.2.3  Comparison Between the Two Approximations ...... 338
        9.2.4  Improvements to the Approximations ............. 339
   9.3  Electronic States of Diatomic Molecules ............... 340
        9.3.1  The Energetic Order of Electronic States ....... 340
        9.3.2  Symmetry Properties of Electronic States ....... 341
        9.3.3  Electronic Angular Momenta ..................... 341
        9.3.4  Electron Spins, Multiplicity and Fine
               Structure Splittings ........................... 343
        9.3.5  Electron Configurations and Molecular Ground
               States ......................................... 344
        9.3.6  Excited Molecular States ....................... 346
        9.3.7  Excimers ....................................... 347
        9.3.8  Correlation Diagrams ........................... 348
   9.4  The Physical Reasons for Molecular Binding ............ 349
        9.4.1  The Chemical Bond .............................. 349
        9.4.2  Multipole Interaction .......................... 350
        9.4.3  Induced Dipole Moments and van der Waals
               Potential ...................................... 352
        9.4.4  General Expansion of the Interaction
               Potential ...................................... 355
        9.4.5  The Morse Potential ............................ 355
        9.4.6  Different Binding Types ........................ 356
   9.5  Rotation and Vibration of Diatomic Molecules .......... 357
        9.5.1  The Born-Oppenheimer Approximation ............. 357
        9.5.2  The Rigid Rotor ................................ 359
        9.5.3  Centrifugal Distortion ......................... 361
        9.5.4  The Influence of the Electron Motion ........... 361
        9.5.5  Vibrations of Diatomic Molecules ............... 363
        9.5.6  Interaction Between Rotation and Vibration ..... 364
        9.5.7  The Dunham Expansion ........................... 366
        9.5.8  Rotational Barrier ............................. 366
   9.6  Spectra of Diatomic Molecules ......................... 367
        9.6.1  Transition Matrix Elements ..................... 367
        9.6.2  Vibrational-Rotational Transitions ............. 369
        9.6.3  The Structure of Electronic Transitions ........ 372
        9.6.4  Continuous Spectra ............................. 377
        Summary ............................................... 380
        Problems .............................................. 381
10 Polyatomic Molecules ....................................... 383
   10.1 Electronic States of Polyatomic Molecules ............. 383
        10.1.1 The H2O Molecule ............................... 383
        10.1.2 Hybridization .................................. 384
        10.1.3 The CO2 Molecule ............................... 388
        10.1.4 Walsh Diagrams ................................. 389
   10.2 Molecules with more than Three Atoms .................. 390
        10.2.1 The NH3 Molecule ............................... 390
        10.2.2 Formaldehyde and Other H2AB Molecules .......... 392
        10.2.3 Aromatic Molecules and π-Electron Systems ...... 392
   10.3 Rotation of Polyatomic Molecules ...................... 394
        10.3.1 Rotation of Symmetric Top Molecules ............ 397
        10.3.2 Asymmetric Rotor Molecules ..................... 399
   10.4 Vibrations of Polyatomic Molecules .................... 399
        10.4.1 Normal Vibrations .............................. 399
        10.4.2 Quantitative Treatment ......................... 399
        10.4.3 Couplings Between Vibrations and Rotations ..... 402
   10.5 Spectra of Polyatomic Molecules ....................... 403
        10.5.1 Vibrational Transitions within the Same
               Electronic State ............................... 404
        10.5.2 Rotational Structure of Vibrational Bands ...... 406
        10.5.3 Electronic Transitions ......................... 407
   10.6 Clusters .............................................. 408
        10.6.1 Production of Clusters ......................... 410
        10.6.2 Physical Properties of Clusters ................ 410
   10.7 Chemical Reactions  ................................... 412
        10.7.1 First Order Reactions .......................... 412
        10.7.2 Second Order Reactions ......................... 413
        10.7.3 Exothermic and Endothermic Reactions ........... 414
        10.7.4 Determination of Absolute Reaction Rates ....... 415
   10.8 Molecular Dynamics and Wave Packets ................... 416
        Summary ............................................... 418
        Problems .............................................. 420
11 Experimental Techniques in Atomic and Molecular Physics .... 422
   11.1 Basic Principles of Spectroscopic Techniques .......... 422
   11.2 Spectroscopic Instruments ............................. 423
        11.2.1 Spectrometers .................................. 423
        11.2.2 Interferometers ................................ 429
        11.2.3 Detectors ...................................... 433
   11.3 Microwave Spectroscopy ................................ 437
   11.4 Infrared Spectroscopy ................................. 440
        11.4.1 Infrared Spectrometers ......................... 440
        11.4.2 Fourier Transform Spectroscopy ................. 440
   11.5 Laser Spectroscopy .................................... 444
        11.5.1 Laser-Absorption Spectroscopy .................. 444
        11.5.2 Optoacoustic Spectroscopy ...................... 445
        11.5.3 Optogalvanic Spectroscopy ...................... 447
        11.5.4 Cavity-Ringdown Spectroscopy ................... 448
        11.5.5 Laser-Induced Fluorescence Spectroscopy ........ 450
        11.5.6 Ionization Spectroscopy ........................ 452
        11.5.7 Laser Spectroscopy in Molecular Beams .......... 453
        11.5.8 Nonlinear Laser Spectroscopy ................... 455
        11.5.9 Saturation Spectroscopy ........................ 456
        11.5.10 Doppler-Free Two-Photon Spectroscopy .......... 459
   11.6 Raman Spectroscopy .................................... 460
        11.6.1 Basic Principles ............................... 460
        11.6.2 Coherent Anti-Stokes Raman Spectroscopy ........ 462
   11.7 Spectroscopy with Synchrotron Radiation ............... 463
   11.8 Electron Spectroscopy ................................. 465
        11.8.1 Experiments on Electron Scattering ............. 465
        11.8.2 Photoelectron Spectroscopy ..................... 467
        11.8.3 ZEKE Spectroscopy .............................. 469
   11.9 Measurements of Magnetic and Electric Moments in
        Atoms and Molecules ................................... 470
        11.9.1 The Rabi-Method of Radio-Frequency
               Spectroscopy ................................... 471
        11.9.2 Stark-Spectroscopy ............................. 473
   11.10 Investigations of Atomic and Molecular Collisions .... 474
        11.10.1 Elastic Scattering ............................ 475
        11.10.2 Inelastic Scattering .......................... 478
        11.10.3 Reactive Scattering ........................... 479
   11.11 Time-Resolved Measurements of Atoms and Molecules .... 480
        11.11.1 Lifetime Measurements ......................... 480
        11.11.2 Fast Relaxation Processes in Atoms and
                Molecules ..................................... 484
   Summary .................................................... 485
   Problems ................................................... 486
12 Modern Developments in Atomic and Molecular Physics ........ 487
   12.1 Optical Cooling and Trapping of Atoms ................. 487
        12.1.1 Photon Recoil .................................. 487
        12.1.2 Optical Cooling of Atoms ....................... 489
        12.1.3 Optical Trapping of Atoms ...................... 491
        12.1.4 Bose-Einstein Condensation ..................... 493
        12.1.5 Molecular Spectroscopy in a MOT ................ 495
   12.2 Time-resolved Spectroscopy in the Femtosecond Range ... 497
        12.2.1 Time-resolved Molecular Vibrations ............. 497
        12.2.2 Femtosecond Transition State Dynamics .......... 498
        12.2.3 Coherent Control ............................... 499
   12.3 Optical Metrology with New Techniques ................. 501
        12.3.1 Frequency Comb ................................. 501
        12.3.2 Atomic Clocks with Trapped Ions ................ 503
   12.4 Squeezing ............................................. 504
   12.5 New Trends in Quantum Optics .......................... 510
        12.5.1 Which Way Experiments .......................... 510
        12.5.2 The Einstein-Podolski-Rosen Paradox ............ 512
        12.5.3 Schrodinger's Cat .............................. 513
        12.5.4 Entanglement and Quantum Bits .................. 513
        12.5.5 Quantum Gates .................................. 515
   Summary .................................................... 517
   Problems ................................................... 518

Chronological Table for the Development of Atomic and
  Molecular Physics ........................................... 519
Solutions to the Exercises .................................... 523
References .................................................... 571
Subject Index ................................................. 581


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:04 2019. Размер: 31,441 bytes.
Посещение N 1825 c 23.10.2012