Metal-organic frameworks: applications from catalysis to gas storage (Weinheim, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMetal-organic frameworks: applications from catalysis to gas storage / ed. by D.Farrusseng. - Weinheim: Wiley-VCH, 2011. - xxii, 392 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.383-391. - ISSN 978-3-527-32870-3
 

Оглавление / Contents
 
   Preface ..................................................... XV
   List of Contributors ....................................... XIX

Part One  Design of Multifunctional Porous MOFs ................. 1

1  Design of Porous Coordination Polymers/Metal-Organic
   Frameworks: Past, Present and Future ......................... 3
   Satoshi Horike and Susumu Kitagawa
   1.1  Introduction ............................................ 3
   1.2  Background and Ongoing Chemistry of Porous
        Coordination Polymers ................................... 3
        1.2.1  Frameworks with High Surface Area ................ 5
        1.2.2  Lewis Acidic Frameworks .......................... 6
        1.2.3  Soft Porous Crystals ............................. 8
   1.3  Multifunctional Frameworks ............................. 10
        1.3.1  Porosity and Magnetism .......................... 10
        1.3.2  Porosity and Conductivity/Dielectricity ......... 12
        1.3.3  Porous Flexibility and Catalysis ................ 12
   1.4  Preparation of Multifunctional Frameworks .............. 13
        1.4.1  Mixed Ligands and Mixed Metals .................. 13
        1.4.2  Core-Shell ...................................... 16
        1.4.3  PCPs and Nanoparticles .......................... 17
   1.5  Perspectives ........................................... 18
   References .................................................. 19

2  Design of Functional Metal-Organic Frameworks by Post-
   Synthetic Modification ...................................... 23
   David Farrusseng, Jérôme Canivet, and Alessandra Quadrelli
   2.1  Building a MOFs Toolbox by Post-Synthetic
        Modification ........................................... 23
        2.1.1  Taking Advantage of Immobilization in a Porous
               Solid ........................................... 23
        2.1.2  Unique Reactivity of MOFs ....................... 24
   2.2  Post-Functionalization of MOFs by Host-Guest
        Interactions ........................................... 26
        2.2.1  Guest Absorption ................................ 26
        2.2.2  Nanoparticle Encapsulation ...................... 27
   2.3  Post-Functionalization of MOFs Based on Coordination
        Chemistry .............................................. 28
        2.3.1  Coordination to Unsaturated Metal Centers ....... 28
        2.3.2  Coordination to Organic Linkers ................. 30
   2.4  Post-Functionalization of MOFs by Covalent Bonds ....... 31
        2.4.1  Chemical Modification by Amide Coupling ......... 32
        2.4.2  Chemical Modification by Imine Condensation ..... 33
        2.4.3  Chemical Modification by Click Chemistry ........ 34
        2.4.4  Reactivity of Bridging Hydroxyl Groups .......... 38
   2.5  Tandem Post-Modification for the Immobilization of
        Organometallic Catalysts ............................... 39
   2.6  Critical Assessment .................................... 41
        2.6.1  Synthetic Restrictions .......................... 43
        2.6.2  Balance Between Functionalization Rate and
               Material Efficacy ............................... 43
        2.6.3  Characterization of the Functionalized
               Materials ....................................... 44
   2.7  Conclusion ............................................. 45
   References .................................................. 45

Part Two  Gas Storage and Separation Applications .............. 49

3  Thermodynamic Methods for Prediction of Gas Separation
   in Flexible Frameworks ...................................... 51
   François-Xavier Coudert
   3.1  Introduction ........................................... 51
        3.1.1  Gas Separation in Metal-Organic Frameworks ...... 51
        3.1.2  Dynamic Materials in the MOF Family ............. 52
        3.1.3  Possible Applications of Flexible MOFs .......... 54
        3.1.4  Need for Theoretical Methods Describing
               Adsorption and Framework Flexibility ............ 55
   3.2  Theoretical Background ................................. 56
        3.2.1  The Osmotic Ensemble ............................ 56
        3.2.2  Classical Uses of the Osmotic Ensemble in
               Molecular Simulation ............................ 57
   3.3  Molecular Simulation Methods ........................... 58
        3.3.1  Direct Molecular Simulation of Adsorption in
               Flexible Porous Solids .......................... 58
        3.3.2  Use of the Restricted Osmotic Ensemble .......... 60
   3.4  Analytical Methods Based on Experimental Data .......... 62
        3.4.1  Analytical Methods for Adsorption. Taxonomy of
               Guest-Induced Flexibility ....................... 62
        3.4.2  Application to Coadsorption: Selectivity
               Predictions and Pressure-Composition Phase
               Diagrams ........................................ 63
   3.5  Outlook ................................................ 66
   References .................................................. 67

4  Separation and Purification of Cases by MOFs ................ 69
   Elisa Barea, Fabrizio Tuna, and Jorge A. Rodriguez Navarro
   4.1  Introduction ........................................... 69
   4.2  General Principles of Gas Separation and
        Purification ........................................... 72
        4.2.1  Some Definitions ................................ 72
        4.2.2  MOFs: New Opportunities for Separation
               Processes ....................................... 73
        4.2.3  Mechanisms of Separation and Design of MOFs
               for Separation Processes ........................ 73
        4.2.4  Experimental Techniques and Methods to
               Evaluate/Characterize Porous Adsorbents ......... 77
   4.3  MOFs for Separation and Purification Processes ......... 79
        4.3.1  MOF Materials as Molecular Sieves ............... 79
        4.3.2  Flexible MOFs for Enhanced Adsorption
               Selectivity ..................................... 81
        4.3.3  MOFs with Coordination Unsaturated Metal
               Centers for Enhanced Selective Adsorption and
               Dehydration ..................................... 86
        4.3.4  Hydrocarbon Separation .......................... 88
        4.3.5  VOC Capture ..................................... 89
        4.3.6  Catalytic Decomposition of Trace Gases .......... 91
   4.4  Conclusions and Perspectives ........................... 92
   References .................................................. 92

5  Opportunities for MOFs in CO2 Capture from Flue Cases,
   Natural Cas, and Syngas by Adsorption ....................... 99
   Gerhard D. Pirngruber and Philip L. Llewellyn
   5.1  Introduction ........................................... 99
   5.2  General Introduction to Pressure Swing Adsorption ...... 99
   5.3  Production of H2 from Syngas .......................... 101
        5.3.1  Requirements for CO2 Adsorbents in H2-PSAs ..... 103
   5.4  C02 Removal from Natural Gas .......................... 103
        5.4.1  Requirements for Adsorbents for CO2-CH4
               Separation in Natural Gas ...................... 104
   5.5  Post-combustion CO2 Capture ........................... 105
        5.5.1  The State of the Art ........................... 105
        5.5.2  PSA and VSA Processes in Post-Combustion CO2
               Capture ........................................ 106
        5.5.3  Requirements for Adsorbents for CO2 Capture
               in Flue Gases .................................. 107
   5.6  MOFs 108
        5.6.1  Considerations of Large Synthesis and
               Stability ...................................... 108
        5.6.2  MOFs for H2-PSA ................................ 109
        5.6.3  MOFs for CO2 Removal from Natural Gas .......... 113
        5.6.4  MOFs for Post-Combustion CO2 Capture ........... 113
   5.7  Conclusions ........................................... 116
   References ................................................. 116

6  Manufacture of MOF Thin Films on Structured Supports for
   Separation and Catalysis ................................... 121
   Sonia Aguado and David Farrusseng
   6.1  Advantages and Limitations of Membrane Technologies
        for Gas and Liquid Separation ......................... 121
   6.2  Mechanism of Mass Transport and Separation ............ 123
   6.3  Synthesis of Molecular Sieve Membranes ................ 127
        6.3.1  Synthesis of Zeolite Membranes ................. 127
               6.3.1.1  Direct Nucleation-Growth on the
                        Support ............................... 128
               6.3.1.2  Secondary Growth ...................... 129
        6.3.2  Preparation of MOF Membranes and Films ......... 129
               6.3.2.1  Self-Assembled Layers ................. 130
               6.3.2.2  Solvothermal Synthesis: Direct and
                        Secondary Growth ...................... 131
   6.4  Application of MOF Membranes .......................... 137
        6.4.1  Gas Separation ................................. 137
               6.4.1.1  Metal Carboxylate-Based Membranes ..... 137
               6.4.1.2  Zinc Imidazolate-Based Membranes ...... 138
        6.4.2  Shaped Structured Reactors ..................... 141
        6.4.3  Perspectives for Future Applications ........... 143
   6.5  Limitations ........................................... 143
   6.6  Conclusions and Outlook ............................... 146
   References ................................................. 147

7  Research Status of Metal-Organic Frameworks for On-Board
   Cryo-Adsorptive Hydrogen Storage Applications .............. 151
   Anne Dailly
   7.1  Introduction - Research Problem and Significance ...... 151
        7.1.1  Challenges in Hydrogen Storage Technologies
               for Hydrogen Fuel Cell Vehicles ................ 151
        7.1.2  Current Status of Hydrogen Storage Options
               and R&D for the Future ......................... 152
   7.2  MOFs as Adsorptive Hydrogen Storage Options ........... 154
   7.3  Experimental Techniques and Methods for Performance
        and Thermodynamic Assessment of Porous MOFs for
        Hydrogen Storage ...................................... 156
   7.4  Material Research Results ............................. 159
        7.4.1  Structure-Hydrogen Storage Properties
               Correlations ................................... 159
        7.4.2  Nature of the Adsorbed Hydrogen Phase .......... 162
   7.5  From Laboratory-Scale Materials to Engineering ........ 165
   7.6  Conclusion ............................................ 167
   References ................................................. 168

Part Three Bulk Chemistry Applications ........................ 171

8  Separation of Xylene Isomers ............................... 173
   Joeri F.M Denayer, Dirk De Vos, and Philibert Leflaive
   8.1  Xylene Separation: Industrial Processes, Adsorbents,
        and Separation Principles ............................. 173
   8.2  Properties of MOFs Versus Zeolites in Xylene
        Separations ........................................... 176
   8.3  Separation of Xylenes Using MIL-47 and MIL-53 ......... 178
        8.3.1  Low-Coverage Gas-Phase Adsorption Properties ... 179
        8.3.2  Molecular Packing .............................. 180
        8.3.3  Separation of Xylene-Mixtures .................. 184
   8.4  Conclusions ........................................... 185
   References ................................................. 187

9  Metal-Organic Frameworks as Catalysts for Organic
   Reactions .................................................. 191
   Lik Hong Wee, Luc Alaerts, Johan A. Martens, and Dirk De
   Vos
   9.1  Introduction .......................................... 191
   9.2  MOFs with Catalytically Active Metal Nodes in the
        Framework ............................................. 191
        9.2.1  Transition Metal Nodes ......................... 192
        9.2.2  Coordinatively Unsaturated Metal Nodes ......... 194
   9.3  Catalytic Functionalization of Organic Framework
        Linkers ............................................... 195
        9.3.1  Porphyrin Functional Groups .................... 195
        9.3.2  Amine and Amide Functions Incorporated via
               Grafting ....................................... 196
   9.4  Homochiral MOFs ....................................... 198
        9.4.1  MOFs with Intrinsic Chirality .................. 198
        9.4.2  Chiral Organic Catalytic Functions ............. 199
        9.4.3  Metalloligands ................................. 200
   9.5  MOF-Encapsulated Catalytically Active Guests .......... 201
        9.5.1  Polyoxometalates (POMs) ........................ 201
        9.5.2  Metalloporphyrins .............................. 203
        9.5.3  Metal Nanoparticles ............................ 204
   9.6  Mesoporous MOFs ....................................... 206
   9.7  Conclusions ........................................... 209
   References ................................................. 210

Part Four Medical Applications ................................ 213

10 Biomedical Applications of Metal-Organic Frameworks ........ 215
   Patricia Horcajada, Christian Serre, Alistair C.
   McKinlay, and Russell E. Morris
   10.1 Introduction .......................................... 215
   10.2 MOFs for Bioapplications .............................. 216
        10.2.1 Choosing the Right Composition ................. 216
        10.2.2 The Role of Flexibility ........................ 217
        10.2.4 Biodegradability and Toxicity of MOFs .......... 219
   10.3 Therapeutics .......................................... 221
        10.3.1 Drug Delivery .................................. 221
        10.3.2 BioMOFs: the Use of Active Linkers ............. 227
        10.3.3 Release of Nitric Oxide ........................ 228
        10.3.4 Activity Tests ................................. 231
               10.3.4.1 Activity of Drag-Containing MOFs ...... 231
               10.3.4.2 Activity of NO-Loaded Samples ......... 233
               10.3.4.3 Activity of Silver Coordination
                        Polymers .............................. 234
   10.4 Diagnostics ........................................... 235
        10.4.1 Magnetic Resonance Imaging ..................... 235
        10.4.2 Optical Imaging ................................ 236
   10.5 From Synthesis of Nanoparticles to Surface
        Modification and Shaping .............................. 237
        10.5.1 Synthesis of Nanoparticles ..................... 237
        10.5.2 Surface Engineering ............................ 239
        10.5.3 Shaping ........................................ 239
   10.6 Discussion and Conclusion ............................. 242
   References ................................................. 244

11 Metal-Organic Frameworks for Biomedical Imaging ............ 251
   Joseph Delia Rocca and Wenbin Lin
   11.1 Introduction .......................................... 251
   11.2 Gadolinium Carboxylate NMOFs .......................... 253
   11.3 Manganese Carboxylate NMOFs ........................... 257
   11.4 Iron Carboxylate NMOFs: the MIL Family ................ 258
   11.5 Iodinated NMOFs: CT Contrast Agents ................... 260
   11.6 Lanthanide Nucleotide NMOFs ........................... 262
   11.7 Guest Encapsulation within NMOFs ...................... 263
   11.8 Conclusion ............................................ 264
   References ................................................. 264

Part Five  Physical Applications .............................. 267

12 Luminescent Metal-Organic Frameworks ....................... 269
   John J. Perry IV, Christina A. Bauer, and Mark D.
   Allendoif
   12.1 Introduction .......................................... 269
   12.2 Luminescence Theory ................................... 270
        12.2.1 Photoluminescence .............................. 270
        12.2.2 Fluorescence Quenching ......................... 273
        12.2.3 Energy Transfer ................................ 273
   12.3 Ligand-Based Luminescence ............................. 274
        12.3.1 Solid-State Luminescence of Organic
               Molecules ...................................... 274
        12.3.2 Ligand-Based Luminescence in MOFs .............. 275
        12.3.3 Ligand-to-Metal Charge Transfer in MOFs ........ 280
        12.3.4 Metal-to-Ligand Charge Transfer in MOFs ........ 281
   12.4 Metal-Based Luminescence .............................. 282
        12.4.1 Metal Luminophores ............................. 282
        12.4.2 Lanthanide Luminescence and the Antenna
               Effect ......................................... 282
        12.4.3 Examples of Metal-Based Luminescence ........... 282
               12.4.3.1 Metal-Centered Luminescence ........... 282
               12.4.3.2 Metal-to-Metal Charge Transfer
                        (MMCT) ................................ 286
        12.4.4 Lanthanide Luminescence as a Probe of the
               Metal-Ligand Coordination Sphere ............... 287
   12.5 Guest-Induced Luminescence ............................ 287
        12.5.1 Encapsulation of Luminophores .................. 288
        12.5.2 Guest-Induced Charge Transfer Excimers and
               Exciplexes ..................................... 290
        12.5.3 Encapsulation of Lanthanide Ion
               Luminophores ................................... 291
   12.6 Applications of Luminescent MOFs ...................... 293
        12.6.1 Chemical Sensors ............................... 293
               12.6.1.1 Small-Molecule and Ion Sensors ........ 294
               12.6.1.2 Oxygen Sensors ........................ 296
               12.6.1.3 Detection of Explosives ............... 297
        12.6.2 Radiation Detection ............................ 298
        12.6.3 Solid-State Lighting ........................... 298
        12.6.4 Nonlinear Optics ............................... 300
        12.6.5 Barcode Labeling ............................... 300
   12.7 Conclusion ............................................ 301
   References ................................................. 302

13 Deposition of Thin Films for Sensor Applications ........... 309
   Mark Allendorf, Angélique Bétard, and Roland A. Fischer
   13.1 Introduction .......................................... 309
   13.2 Literature Survey ..................................... 310
   13.3 Signal Transduction Modes ............................. 310
   13.4 Considerations in Selecting MOFs for Sensing
        Applications .......................................... 312
        13.4.1 Pore Dimensions ................................ 312
        13.4.2 Adsorption Thermodynamics ...................... 313
        13.4.3 Film Attachment ................................ 315
        13.4.4 Film Thickness and Morphology .................. 318
        13.4.5 Response Time .................................. 319
        13.4.6 Mechanical Properties .......................... 320
   13.5 MOF Thin Film Growth: Methods, Mechanisms, and
        Limitations ........................................... 320
        13.5.1 Growth From Aged Solvothermal Mother
               Solutions ...................................... 320
        13.5.2 Assembly of Preformed MOF (Nano-) Particles
               or Layers ...................................... 323
        13.5.3 Electrochemical Deposition ..................... 325
        13.5.4 Liquid-Phase Epitaxy ........................... 325
        13.5.5 Toward Heteroepitaxial Growth of Multiple
               MOF Layers ..................................... 328
        13.5.6 Growth of MOF Films in Confined Spaces ......... 329
        13.5.7 Comparison of the Different Methods for MOF
               Thin Film Growth ............................... 331
   13.6 Conclusions and Perspectives .......................... 331
   References ................................................. 332

Part Six  Large-Scale Synthesis and Shaping of MOFs ........... 337

14 Industrial MOF Synthesis ................................... 339
   Alexander Czaja, Emi Leung, Natalia Trukhan, and Ulrich
   Müller
   14.1 Introduction .......................................... 339
   14.2 Raw Materials ......................................... 340
        14.2.1 Metal Sources .................................. 340
        14.2.2 linkers ........................................ 340
   14.3 Synthesis ............................................. 343
        14.3.1 Hydrothermal Synthesis ......................... 344
        14.3.2 Electrochemical Synthesis ...................... 345
   14.4 Shaping ............................................... 347
   14.5 Applications .......................................... 349
        14.5.1 Natural Gas Storage for Automobile
               Applications ................................... 349
        14.5.2 Ethylene Adsorption for Food Storage ........... 350
   14.6 Conclusion and Outlook ................................ 351
   References ................................................. 352

15 MOF Shaping and Immobilization ............................. 353
   Bertram Böhringer, Roland Fischer, Martin R. Lohe,
   Marcus Rose, Stefan Kaskel, and Pia Küsgens
   15.1 Introduction .......................................... 353
   15.2 MOF@Fiber Composite Materials ......................... 354
        15.2.1 MOF-Containing Paper Sheets .................... 354
        15.2.2 MOF@Pulp Fibers ................................ 355
        15.2.3 Electrospinning of MOF@Polymer Composite
               Fibers ......................................... 356
        15.2.4 MOF Fixation in Textile Structures ............. 359
              15.2.4.1 Pretreatment ........................... 360
              15.2.4.2 Wet Particle Insertion ................. 362
              15.2.4.3 Dry Particle Insertion ................. 363
   15.3 Requirements of Adsorbents for Individual
        Protection ............................................ 367
        15.3.1 Relevant Protective Clothing Applications ...... 367
        15.3.2 Filter Performance ............................. 368
        15.3.3 Testing the Chemical Protection Performance
               of Filters ..................................... 371
        15.3.4 Concepts for Application ....................... 373
   15.4 MOFs in Monolithic Structures ......................... 373
        15.4.1 MOF@Polymeric Beads ............................ 374
        15.4.2 Extruded MOF Bodies ............................ 374
        15.4.3 Monolithic MOF Gels ............................ 375
   References ................................................. 379

   Index ...................................................... 383


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:06 2019. Размер: 27,615 bytes.
Посещение N 1952 c 23.10.2012