Larsson S. Chemical physics: electrons and excitations (Boca Raton, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLarsson S. Chemical physics: electrons and excitations. - Boca Raton: CRC Press, 2012. - xviii, 509 p.: ill. - Bibliogr.: p.469-484. - Ind.: p.499-509. - ISBN 978-1-4398-2251-7
 

Оглавление / Contents
 
Preface ...................................................... xvii
Acknowledgments ............................................... xix

Chapter 1  Quantum Theory ....................................... 1
1.1  Introduction ............................................... 1
1.2  Electromagnetic Radiation .................................. 1
     1.2.1  Polarization of EM Radiation ........................ 2
     1.2.2  Planck's Law ........................................ 2
     1.2.3  Photoelectric Effect ................................ 3
     1.2.4  X-Rays .............................................. 4
1.3  Electrons .................................................. 5
     1.3.1  Discovery of the Electron ........................... 6
     1.3.2  Quantum Conditions in the Atom ...................... 6
     1.3.3  Old Quantum Theory .................................. 7
     1.3.4  Matter Waves ........................................ 8
1.4  Time-Independent Schrödinger Equation ..................... 11
     1.4.1  Schrödinger's Standing Waves ....................... 11
     1.4.2  Particle in a Box .................................. 12
     1.4.3  Finite Walls, Tunneling ............................ 14
     1.4.4  Interpretation of the Wave Function ................ 15
1.5  Mathematical Background ................................... 18
     1.5.1  Eigenvalues and Eigenfunctions ..................... 18
     1.5.2  Hermitean Operators ................................ 19
     1.5.3  Expectation Value .................................. 19
     1.5.4  Separation of Variables ............................ 20
1.6  Variation Principle: Linear Expansion ..................... 22
     1.6.1  Energy Expectation Value is ≥ E0, the Lowest
            Eigenvalue of H .................................... 22
     1.6.2  Linear Expansion ................................... 23
1.7  Spin ...................................................... 23
     1.7.1  Spin of a Single Electron .......................... 24
     1.7.2  Properties of Spin Functions ....................... 25
     1.7.3  Spin Multiplicity .................................. 28
1.8  Many-Electron Theory ...................................... 30
     1.8.1  Wave Function for Many Electrons ................... 30
     1.8.2  Pauli Exclusion Principle .......................... 31
     1.8.3  Independent Electron Model ......................... 32
     1.8.4  Correlation Hole ................................... 34
     1.8.5  Correlation Energy ................................. 35
     1.8.6  Configuration Interaction .......................... 36
     1.8.7  Electronic Density Matrix .......................... 36
     1.8.8  Correlation Error .................................. 38

Chapter 2  Atoms ............................................... 41
2.1  Atomic Units .............................................. 41
2.2  Hydrogen Atom ............................................. 42
     2.2.1  Time-Independent Schrödinger Equation for the
            Hydrogen Atom ...................................... 42
     2.2.2  Angular Function ................................... 43
     2.2.3  Radial Function .................................... 46
     2.2.4  Energy Spectrum .................................... 47
     2.2.5  Size of Orbitals ................................... 48
     2.2.6  Slater's Screening Rules: Size of Atoms ............ 49
2.3  Equation of Motion for Single Electrons ................... 50
     2.3.1  Hartree's Self-Consistent Field (SCF) Method ....... 50
     2.3.2  Hartree-Fock ....................................... 51
     2.3.3  Brillouin's Theorem ................................ 53
     2.3.4  Ionization Energy, Electron Affinity, and
            Disproportionation Energy .......................... 54
     2.3.5  Koopmans' Theorem .................................. 55
     2.3.6  Møller-Plesset (MP) Theorem ........................ 57
     2.3.7  Best Overlap Orbitals .............................. 58
     2.3.8  Exchange Hole ...................................... 59
     2.3.9  Local Exchange and Density Functional Theory ....... 61
     2.3.10 DFT Method as a Practical Calculation Method ....... 62
2.4  Correlation and Multiplet Theory .......................... 63
     2.4.1  Hylleraas' Method .................................. 63
     2.4.2  Central Field Approximation ........................ 65
     2.4.3  Correlation ........................................ 67
2.5  Atoms in Chemistry ........................................ 68
     2.5.1  Periodic Table of the Elements ..................... 68
     2.5.2  Hydrogen Atom ...................................... 69
     2.5.3  Oxidation States and Oxidation Potentials .......... 70
     2.5.4  Hybridization of Atomic Orbitals ................... 71

Chapter 3  Molecules ........................................... 75
3.1  Introduction .............................................. 75
3.2  Chem ical Bonding ......................................... 75
     3.2.1  Hydrogen Molecule, H2 .............................. 75
     3.2.2  Representation of MO ............................... 78
     3.2.3  Homonuclear Diatomic Molecules ..................... 78
     3.2.4  Heteronuclear Diatomic Molecules ................... 80
     3.2.5  Ionic Bonds ........................................ 81
     3.2.6  Bond Distance Depends on Occupation ................ 82
3.3  Polyatomic Molecules ...................................... 83
     3.3.1  Water Molecule ..................................... 84
     3.3.2  Saturated Hydrocarbons ............................. 85
     3.3.3  Aromatic (Unsaturated) Hydrocarbons ................ 86
3.4  Hiickel Model for Aromatic Hydrocarbons ................... 87
     3.4.1  Hiickel Model ...................................... 87
     3.4.2  Bond-Length-Dependent Couplings .................... 91
     3.4.3  Cyclic π-Systems ................................... 91
     3.4.4  Linear π-Systems ................................... 94
     3.4.5  Alternant Systems .................................. 96
     3.4.6  Fullerenes ......................................... 98
3.5  Excited States ........................................... 100
     3.5.1  Diatomic Molecules ................................ 101
     3.5.2  Aromatic Molecules ................................ 101
     3.5.3  Transition Moment ................................. 102
     3.5.4  Spectra of Cyclic and Linear π-Systems ............ 102
     3.5.5  PPP Model ......................................... 105
     3.5.6  Singlets and Triplets ............................. 106

Chapter 4  Nuclear Motion ..................................... 109
4.1  Introduction ............................................. 109
4.2  Separation of Electronic and Nuclear Coordinates ......... 109
     4.2.1  Born-Oppenheimer Approximation .................... 109
     4.2.2  Nuclei Move on PES ................................ 110
     4.2.3  Calculation of PES ................................ 111
     4.2.4  Isotope Effects and Isotope Separation ............ 112
     4.2.5  Hellman-Feynman Theorem ........................... 113
     4.2.6  Car-Parinello Approach ............................ 115
4.3  Classical Molecular Dynamics ............................. 115
     4.3.1  Classical Harmonic Oscillator ..................... 116
     4.3.2  Anharmonic Motion ................................. 118
     4.3.3  Small Molecular Oscillations ...................... 118
     4.3.4  Eigenvalue Equation ............................... 120
     4.3.5  Molecular Dynamics Simulation ..................... 120
4.4  Quantization of Vibrations ............................... 122
     4.4.1  Harmonic Oscillator ............................... 122
     4.4.2  Small Vibrations .................................. 125
4.5  Vibrational Spectra ...................................... 126
     4.5.1  Intensity in Infrared Spectra ..................... 126
     4.5.2  IR Frequency Depends on Type of Bond .............. 128
     4.5.3  Raman Spectra ..................................... 129
     4.5.4  Rotation Spectra .................................. 129
4.6  Vibrations in Electronic Spectra ......................... 132
     4.6.1  Vibrational Broadening ............................ 132
     4.6.2  Franck-Condon Factors ............................. 133
4.7  PES Crossing ............................................. 134
     4.7.1  Avoided Crossing .................................. 134
     4.7.2  Vibration Spectrum in Double Minimum PES .......... 136

Chapter 5  Statistical Mechanics .............................. 139
5.1  Introduction ............................................. 139
5.2  Partition Function and Thermodynamic Properties .......... 140
     5.2.1  Boltzmann Distribution ............................ 140
     5.2.2  Partition Function ................................ 142
     5.2.3  Internal Energy ................................... 142
     5.2.4  Entropy ........................................... 143
     5.2.5  Helmholtz Free Energy ............................. 144
     5.2.6  Pressure .......................................... 145
     5.2.7  Enthalpy .......................................... 145
     5.2.8  Gibbs' Free Energy ................................ 146
     5.2.9  Maxwell Relations ................................. 147
5.3  Internal Energy and Heat Capacity in Gas Phase ........... 148
     5.3.1  Translational Contribution ........................ 148
     5.3.2  Internal Energy and Heat Capacity due to
            Vibrations ........................................ 150
5.4  Chemical Reactions ....................................... 152
     5.4.1  Chemical Potential ................................ 152
     5.4.2  Gibbs-Duhem Equation .............................. 153
     5.4.3  Gibbs-Helmholtz Equation .......................... 153
     5.4.4  Gibbs Energy for Ideal Gas ........................ 154
     5.4.5  Law of Mass Action ................................ 155
     5.4.6  Connection between Gø and К ....................... 156
     5.4.7  Temperature Dependence of Equilibrium Constant .... 156
5.5  Equilibrium Statistical Mechanics Using Ensembles ........ 157
     5.5.1  Phase Space ....................................... 157
     5.5.2  Problems in the Earlier Derivation ................ 158
     5.5.3  Canonical Ensemble ................................ 159
     5.5.4  Grand Canonical Ensemble .......................... 160
     5.5.5  Fermi-Dirac and Bose-Einstein Statistics .......... 163
            5.5.5.1  FD Statistics ............................ 164
            5.5.5.2  BE Statistics ............................ 165
5.6  Nonequilibrium Statistical Mechanics ..................... 166
     5.6.1  Maxwell Velocity Distribution ..................... 166
     5.6.2  Kinetic Theory of Gases ........................... 167
     5.6.3  Molecular Dynamics: The Entropy Problem ........... 169
     5.6.4  Diffusion ......................................... 170

Chapter 6  Ions in Crystals and in Solution ................... 173
6.1  Introduction ............................................. 173
6.2  Ions in Aqueous Solution ................................. 173
     6.2.1  Solvent Structure around Ions ..................... 174
     6.2.2  Born Equation ..................................... 175
6.3  Crystals ................................................. 176
     6.3.1  Crystal Directions and Planes: Unit Cell and
            Reciprocal Space .................................. 176
     6.3.2  Crystal Systems ................................... 179
     6.3.3  Lattice Enthalpy .................................. 180
6.4  Crystal Field Theory for Transition Metal Ions ........... 182
     6.4.1  Transition Metal Oxides and Salts ................. 183
     6.4.2  Energy Levels ..................................... 183
     6.4.3  High Spin and Low Spin ............................ 184
     6.4.4  Problems with Crystal Field Theory ................ 185
6.5  Ligand Field Theory ...................................... 186
     6.5.1  Extension to LFT .................................. 186
     6.5.2  Localized or Delocalized Excitations .............. 188
     6:5.3  First-Order Jahn-Teller Effect .................... 188
     6.5.4  L → M Charge Donation ............................. 189

Chapter 7  Time-Dependent Quantum Mechanics ................... 191
7.1  Introduction ............................................. 191
7.2  Wave Equation ............................................ 191
     7.2.1  Time-Independent Energy Levels and Coefficients ... 191
     7.2.2  Time-Dependent Energy Levels ...................... 194
     7.2.3  Electron Transfer Dynamics ........................ 197
     7.2.4  Landau-Zener Approximation ........................ 199
7.3  Time Dependence as a Perturbation ........................ 200
     7.3.1  Time-Dependent Perturbation Theory ................ 200
     7.3.2  Decay Rates: Fermi Golden Rule .................... 201

Chapter 8  Chemical Kinetics .................................. 207
8.1  Introduction ............................................. 207
8.2  Rate of Chemical Reactions ............................... 207
     8.2.1  Reversible and Irreversible Reactions ............. 207
     8.2.2  Activation Energy ................................. 208
     8.2.3  Elementary Reactions .............................. 209
     8.2.4  Rate Measurements ................................. 211
8.3  Integrated Rate Equations ................................ 212
     8.3.1  Irreversible Reactions of First Order ............. 212
     8.3.2  Irreversible Reactions of Second Order ............ 212
     8.3.3  Irreversible Reactions of Zeroth Order ............ 214
     8.3.4  Unimolecular Reversible Reaction .................. 214
8.4  Consecutive Reactions .................................... 216
     8.4.1  Rate Derivation ................................... 216
     8.4.2  Steady State Assumption ........................... 218

Chapter 9  Proton Transfer .................................... 219
9.1  Introduction ............................................. 219
     9.1.1  Acid-Base Concept of Br0nsted ..................... 219
     9.1.2  Acid-Base Equilibrium in Water .................... 220
     9.1.3  Proton Affinity ................................... 222
     9.1.4  Hydration ......................................... 223
9.2  Hydrogen Bonding ......................................... 223
     9.2.1  Typical Hydrogen Bonds ............................ 224
     9.2.2  Hydrogen Bonds in Proteins ........................ 225
     9.2.3  Strength of a Hydrogen Bond ....................... 226
     9.2.4  Potential Energy Surface .......................... 226
     9.2.5  Coordinate System ................................. 229
     9.2.6  Parabolic Model (Marcus Model for Proton
            Transfer) ......................................... 231
9.3  Proton Transfer .......................................... 233
     9.3.1  Rates of PT Reactions ............................. 233
     9.3.2  Proton Tunneling .................................. 234
     9.3.3  Grotthuss Effect .................................. 234

Chapter 10 Electron Transfer Reactions ........................ 237
10.1 Introduction ............................................. 237
     10.2 Homogeneous ET Reactions ............................ 237
          10.2.1 Inner and Outer Sphere ET Reactions .......... 237
          10.2.2 Electron Transfer Coupled to Proton
                 Transfer ..................................... 240
     10.3 Electrochemistry .................................... 241
          10.3.1 Electrochemical Cells ........................ 242
          10.3.2 Thermodynamics of the Cell ................... 243
          10.3.3 Electrochemical Series ....................... 244
          10.3.4 Latimer and Frost Diagrams ................... 245
     10.4 Marcus Parabolic Model for ET ....................... 246
          10.4.1 Adiabatic and Nonadiabatic Transfer .......... 247
          10.4.2 Reorganization Energy (λ) .................... 250
          10.4.3 Localized and Delocalized Mixed Valence ...... 253
          10.4.4 Wave Functions ............................... 256
          10.4.5 Intensity of Intervalence Transition ......... 257
     10.5 Rate of ET Reactions ................................ 258
          10.5.1 Gibbs Free Energy of ET Reaction ............. 258
          10.5.2 Adiabatic, Asymmetric System ................. 259
          10.5.3 ET Rate for Nonadiabatic Reaction ............ 260
          10.5.4 Electronic Factor k .......................... 261
          10.5.5 Adiabatic and Nonadiabatic Limits ............ 264
          10.5.6 Miller's Experiment .......................... 264
     10.6 Electronic Coupling ................................. 265
          10.6.1 Gamow Model .................................. 266
          10.6.2 Orbital Interaction Model .................... 267
          10.6.3 State Interaction Model ...................... 269
          10.6.4 Direct Calculation of Electronic Coupling .... 270
          10.6.5 Pathway Model ................................ 273
          10.6.6 Nonexponential Decrease ...................... 274
          10.6.7 Electron Transfer through a Solvent .......... 275
     10.7 Disproportionation .................................. 276
          10.7.1 Examples of Disproportionation ............... 276
          10.7.2 Day-Hush Disproportionation Model ............ 277
     10.8 Quantized Nuclear Motion ............................ 279
          10.8.1 PKS Model .................................... 280
          10.8.2 Nuclear Tunneling ............................ 280
          10.8.3 Vibrational Model for ET in the Limit of
                 Low Barrier .................................. 281

Chapter 11 Biological Electron Transfer ....................... 285
11.1 Introduction ............................................. 285
11.2 The Living System ........................................ 285
     11.2.1 Formation of Life ................................. 286
     11.2.2 Cells, Mitochondria, and Cell Membranes ........... 288
     11.2.3 Membrane Proteins ................................. 289
11.3 Electron Carriers and Other Functional Groups ............ 290
     11.3.1 Functional Groups ................................. 290
     11.3.2 Carbohydrates and Lignin .......................... 292
     11.3.3 Lipids ............................................ 294
     11.3.4 Nicotinamide Adenine Dinucleotide (NAD+) .......... 295
     11.3.5 Flavins ........................................... 296
     11.3.6 Quinones .......................................... 297
     11.3.7 Hemes and Cytochromes ............................. 298
     11.3.8 Iron-Sulfur Proteins .............................. 298
11.4 Biological Electron Transfer ............................. 300
     11.4.1 Electrons in the Electron Transport Chain ......... 301
     11.4.2 Electron Transfer Steps ........................... 303
     11.4.3 More on Activation Energy ......................... 304
     11.4.4 More on Coupling .................................. 305
     11.4.5 bc1 Complex ....................................... 307
     11.4.6 Cytochrome с Oxidase .............................. 307

Chapter 12 Photophysics and Photochemistry .................... 309
12.1 Introduction ............................................. 309
12.2 Photophysics ............................................. 309
     12.2.1 Absorption and Reflection of Light in Matter ...... 309
     12.2.2 Refraction and Diffraction ........................ 311
     12.2.3 Lambert-Beer's Law ................................ 312
     12.2.4 Laser Radiation ................................... 313
     12.2.5 Absorption of Radiation in Atoms and
            Molecules ......................................... 315
     12.2.6 Rate of Spontaneous Emission ...................... 319
12.3 Molecular Photophysics ................................... 323
     12.3.1 Fluorescence: Stokes Shift ........................ 323
     12.3.2 Internal Conversion ............................... 326
     12.3.3 Spin-Orbit Coupling and Intersystem Crossing ...... 326
     12.3.4 Phosphorescence ................................... 327
     12.3.5 Types of Spectra .................................. 328
     12.3.6 Spectral Narrowing ................................ 329
12.4 Rate Measurements ........................................ 329
     12.4.1 Photokinetics ..................................... 330
     12.4.2 Femtochemistry .................................... 332
     12.4.3 Laser Light in Chemistry .......................... 332
     12.4.4 Transient Absorption Spectroscopy ................. 333
     12.4.5 Time-Resolved Resonance Raman Spectroscopy ........ 333
     12.4.6 Time-Resolved Emission Spectroscopy ............... 334
12.5 Photochemistry: Mechanisms ............................... 334
     12.5.1 π-Systems as Absorbers of Light Energy ............ 335
     12.5.2 Photochemical Reactions ........................... 335
     12.5.3 Cis-trans Isomerization ........................... 336
     12.5.4 Polyenes .......................................... 336
     12.5.5 Carotenoids ....................................... 338
     12.5.6 Retinal and Vision ................................ 339

Chapter 13 Photoinduced Electron Transfer ..................... 343
13.1 Introduction ............................................. 343
13.2 Charge Transfer Transition in Spectra .................... 343
     13.2.1 Charge Transfer States as Excited States .......... 343
     13.2.2 Mulliken Charge Transfer Complexes ................ 344
     13.2.3 Emission from Charge-Separated States ............. 345
     13.2.4 Triplet Formation by Charge Transfer .............. 345
13.3 Polari zation Energy ..................................... 347
     13.3.1 Reaction Field .................................... 347
     13.3.2 Rehm-Weller Equation .............................. 347
13.4 Intermolecular and Intramolecular PIET ................... 350
     13.4.1 Rate of PIET ...................................... 350
     13.4.2 Intermolecular PIET in Solution and in Glass ...... 352
     13.4.3 Charge Recombination .............................. 353
     13.4.4 Intramolecular PIET ............................... 353
     13.4.5 Intramolecular Charge Transfer .................... 353
     13.4.6 Fullerene Systems ................................. 354
     13.4.7 Other Intramolecular PIET Experiments ............. 355
13.5 Molecular Photovoltaics .................................. 356

Chapter 14 Excitation Energy Transfer ......................... 359
14.1 Introduction ............................................. 359
14.2 Excited States of Bichromophores ......................... 359
     14.2.1 Chromophores ...................................... 359
     14.2.2 Wave Functions and Matrix Elements of
            Bichromophores .................................... 363
     14.2.3 Covalent Bonding in Ground and Excited States ..... 365
14.3 Transition Moments ....................................... 366
     14.3.1 Transition Densities .............................. 366
     14.3.2 Energy Order of Dimer Exciton States .............. 367
     14.3.3 Distant Chromophores Interact via Transition
            Charges ........................................... 368
14.4 Fluorescence Resonance Energy Transfer ................... 371
     14.4.1 Interaction between Spin-Singlet Excitations
            (Förster) ......................................... 371
     14.4.2 The Mysterious Factor of Two ...................... 373
     14.4.3 Dexter Coupling ................................... 373
     14.4.4 Rate Equations for EET ............................ 374

Chapter 15 Photosynthesis ..................................... 375
15.1 Introduction ............................................. 375
15.2 Molecules of Photosynthesis .............................. 375
     15.2.1 Chl and BChl ...................................... 375
     15.2.2 Carotenoids ....................................... 377
     15.2.3 Phycocyanobilins .................................. 377
15.3 Antenna Systems .......................................... 379
     15.3.1 Purple Bacteria Antenna Systems ................... 379
     15.3.2 Green Plant Antenna Systems ....................... 381
15.4 Bacterial Reaction Centers ............................... 382
     15.4.1 Structure ......................................... 382
     15.4.2 Charge Separation and ET .......................... 383
15.5 Green Plant Photosynthesis ............................... 385
     15.5.1 Photosystem I ..................................... 385
     15.5.2 Photosystem II .................................... 386
     15.5.3 Binding of Carbon Dioxide: RuBisCo ................ 387

Chapter 16 Metals and Semiconductors .......................... 389
16.1 Introduction ............................................. 389
16.2 Free Electron Models and Conductivity .................... 389
     16.2.1 Resistivity and Conductivity ...................... 390
     16.2.2 Drude Model ....................................... 391
     16.2.3 Atomic Orbital Overlap ............................ 393
     16.2.4 Free Electron Model in One Dimension .............. 395
     16.2.5 Bethe-Sommerfeld Model ............................ 396
     16.2.6 Conductivity in a Periodic Potential at T = 0 ..... 398
     16.2.7 Conductivity at Elevated Temperature .............. 400
16.3 Tight-Binding Model ...................................... 400
     16.3.1 One-Dimensional Model ............................. 401
     16.3.2 Peierl's Distortion ............................... 402
     16.3.3 Bloch Band Model .................................. 404
     16.3.4 Effective Mass .................................... 405
     16.3.5 Conductivity in Allotropic Forms of Carbon ........ 406
16.4 Localization-Delocalization .............................. 407
     16.4.1 Metal-Insulator Transition ........................ 407
     16.4.2 Polarons .......................................... 409
     16.4.3 Mott Insulators ................................... 409
     16.4.4 Simple Model for Metal-Insulator Transition ....... 411
     16.4.5 Holstein Model .................................... 412
16.5 Semiconductors ........................................... 413
     16.5.1 Bonding Conditions in Diamond ..................... 413
     16.5.2 Conductivity and Doping in Semiconductors ......... 415
     16.5.3 p-n Junctions ..................................... 416
     16.5.4 Solar Cells ....................................... 417
16.6 Phonons .................................................. 418

Chapter 17 Conductivity by Electron Pairs ..................... 419
17.1 Introduction ............................................. 419
17.2 Superconductivity ........................................ 419
     17.2.1 Experiment and Theory ............................. 419
     17.2.2 Meissner Effect ................................... 421
     17.2.3 Metal-Ammonia Solution ............................ 421
     17.2.4 Cooper Pairs and the BCS Model .................... 423
     17.2.5 High TC Superconductivity ......................... 425
17.3 Coupling and Correlation in Electron Pair Transfer ....... 426
     17.3.1 Mott's Justification of Hubbard U ................. 426
     17.3.2 Application of the MV-3 Model ..................... 427
     17.3.3 Intermetal Coupling ............................... 429
     17.3.4 Stable Charged States ............................. 430
     17.3.5 Spin-Coupled States ............................... 432
17.4 MV-3 Systems in the State Overlap Region ................. 433
     17.4.1 Calculation of Hubbard U: Born Effect ............. 433
     17.4.2 Fullerene Superconductivity ....................... 434
     17.4.3 Cuprate Superconductivity ......................... 435
     17.4.4 Bismuthates ....................................... 436
17.5 Pair Conductivity in the Ground State .................... 436
     17.5.1 Cyclobutadiene with Equal Bond Lengths ............ 436
     17.5.2 Wave Functions at the van Hove Singularity
            (x = 0) ........................................... 438
     17.5.3 Vibronic Wave Functions ........................... 442
     17.5.4 Final Wave Function ............................... 443

Chapter 18 Conductivity in Organic Systems .................... 445
18.1 Introduction ............................................. 445
18.2 Organic Semiconductors ................................... 445
     18.2.1 Electrons and Excitations in Organic Molecular
            Crystals .......................................... 445
     18.2.2 Conductivity in Organic Systems ................... 447
     18.2.3 Charge Transfer Spectra ........................... 448
     18.2.4 Organic Light-Emitting Diodes ..................... 451
18.3 Stacked, Conducting π-Systems ............................ 452
     18.3.1 TTF-TCNQ .......................................... 452
     18.3.2 Bechgaard Salts: Organic Superconductors .......... 453
18.4 Conducting Polymers ...................................... 454
     18.4.1 (SN)x ............................................. 454
     18.4.2 Polyacetylene ..................................... 455
     18.4.3 Polyaniline ....................................... 456
     18.4.4 Other Conducting Polymers ......................... 457
18.5 Electronic Structure of One-Dimensional Crystals ......... 460
     18.5.1 Su-Schrieffer-Heeger Model ........................ 460
     18.5.2 Derealization Model for PA ........................ 460
     18.5.3 Behavior of Three-Quarter or One-Quarter Filled
            Bands ............................................. 461
     18.5.4 Mobility of Electrons ............................. 462
     18.5.5 Conductivity in DNA? .............................. 464
     18.5.6 Conductivity at Low Temperatures .................. 467

Bibliography .................................................. 469
Appendices .................................................... 485
Index ......................................................... 499


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:10 2019. Размер: 34,980 bytes.
Посещение N 1403 c 30.10.2012