Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology (Hoboken, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаComputational methods for large systems: electronic structure approaches for biotechnology and nanotechnology / ed. by J.R.Reimers. - Hoboken: Wiley, 2011. - xxii, 659 p.: ill. - Ind.: p.649-659. - ISBN 978-0-470-48788-4
 

Оглавление / Contents
 
Contributors ................................................. xiii
Preface: Choosing the Right Method for Your Problem .......... xvii

A  DFT: THE BASIC WORKHORSE ..................................... 1

1  Principles of Density Functional Theory: Equilibrium and 
   Nonequilibrium Applications .................................. 3
   Ferdinand Evers
   1.1  Equilibrium Theories .................................... 3
   1.2  Local Approximations .................................... 8
   1.3  Kohn-Sham Formulation .................................. 11
   1.4  Why DFT Is So Successful ............................... 13
   1.5  Exact Properties of DFTs ............................... 14
   1.6  Time-Dependent DFT ..................................... 19
   1.7  TDDFT and Transport Calculations ....................... 28
   1.8  Modeling Reservoirs In and Out of Equilibrium .......... 34

2  SIESTA: A Linear-Scaling Method for Density Functional
   Calculations ................................................ 45
   Julian D. Gale
   2.1  Introduction ........................................... 45
   2.2  Methodology ............................................ 48
   2.3  Future Perspectives .................................... 73

3  Large-Scale Plane-Wave-Based Density Functional Theory:
   Formalism, Parallelization, and Applications ................ 77
   Eric Bylaska, Kiril Tsemekhman, Niranjan Govind, and Marat
   Valiev
   3.1  Introduction ........................................... 78
   3.2  Plane-Wave Basis Set ................................... 79
   3.3  Pseudopotential Plane-Wave Method ...................... 81
   3.4  Charged Systems ........................................ 89
   3.5  Exact Exchange ......................................... 92
   3.6  Wavefunction Optimization for Plane-Wave Methods ....... 95
   3.7  Car-Parrinello Molecular Dynamics ...................... 98
   3.8  Parallelization ....................................... 101
   3.9  AIMD Simulations of Highly Charged Ions in Solution ... 106
   3.10 Conclusions ........................................... 110
   
В  HIGHER-ACCURACY METHODS .................................... 117
   
4  Quantum Monte Carlo, Or, Solving the Many-Particle
   Schrцdinger Equation Accurately While Retaining
   Favorable Scaling with System Size ......................... 119
   Michael D. Towler
   4.1  Introduction .......................................... 119
   4.2  Variational Monte Carlo ............................... 124
   4.3  Wavefunctions and Their Optimization .................. 127
   4.4  Diffusion Monte Carlo ................................. 137
   4.5  Bits and Pieces ....................................... 146
   4.6  Applications .......................................... 157
   4.7  Conclusions ........................................... 160

5  Coupled-Cluster Calculations for Large Molecular and
   Extended Systems ........................................... 167
   Kami Kowalski, Jeff R. Hammond, Wibe A. de Jong, 
   Peng-Dong Fan, Marat Valiev, Dunyou Wang, and Niranjan
   Govind
   5.1  Introduction .......................................... 168
   5.2  Theory ................................................ 168
   5.3  General Structure of Parallel Coupled-Cluster Codes ... 174
   5.4  Large-Scale Coupled-Cluster Calculations .............. 179
   5.5  Conclusions ........................................... 194

6  Strongly Correlated Electrons: Renormalized Band
   Structure Theory and Quantum Chemical Methods .............. 201
   Liviu Hozoi and Peter Fulde
   6.1  Introduction .......................................... 201
   6.2  Measure of the Strength of Electron Correlations ...... 204
   6.3  Renormalized Band Structure Theory .................... 206
   6.4  Quantum Chemical Methods .............................. 208
   6.5  Conclusions ........................................... 221
   MORE-ECONOMICAL METHODS .................................... 225

7  The Energy-Based Fragmentation Approach for Ab Initio
   Calculations of Large Systems .............................. 227
   Wei Li, Weijie Hua, Tao Fang, and Shuhua Li
   7.1  Introduction .......................................... 227
   7.2  The Energy-Based Fragmentation Approach and Its
        Generalized Version ................................... 230
   7.3  Results and Discussion ................................ 238
   7.4  Conclusions ........................................... 251
   7.5  Appendix: Illustrative Example of the GEBF 
        Procedure ............................................. 252

8  MNDO-like Semiempirical Molecular Orbital Theory and Its 
   Application to Large Systems ............................... 259
   Timothy Clark and James J.P. Stewart
   8.1  Basic Theory .......................................... 259
   8.2  Parameterization ...................................... 271
   8.3  Natural History or Evolution of MNDO-like Methods ..... 278
   8.4  Large Systems ......................................... 281

9  Self-Consistent-Charge Density Functional Tight-Binding
   Method: An Efficient Approximation of Density Functional
   Theory ..................................................... 287
   Marcus Elstner and Michael Gaus
   9.1  Introduction .......................................... 287
   9.2  Theory ................................................ 289
   9.3  Performance of Standard SCC-DFTB ...................... 300
   9.4  Extensions of Standard SCC-DFTB ....................... 302
   9.5  Conclusions ........................................... 304

10 Introduction to Effective Low-Energy Hamiltonians in 
   Condensed Matter Physics and Chemistry ..................... 309
   Ben J. Powell
   10.1  Brief Introduction to Second Quantization Notation ... 310
   10.2  Hückel or Tight-Binding Model ........................ 314
   10.3  Hubbard Model ........................................ 326
   10.4  Heisenberg Model ..................................... 339
   10.5  Other Effective Low-Energy Hamiltonians for
         Correlated Electrons ................................. 349
   10.6  Holstein Model ....................................... 353
   10.7  Effective Hamiltonian or Semiempirical Model? ........ 358
   
D  ADVANCED APPLICATIONS ...................................... 367
   
11 SIESTA: Properties and Applications ........................ 369
   Michael J. Ford
   11.1 Ethy nylbenzene Adsorption on Au( 111) ................ 370
   11.2 Dimerization of Thiols on Au( 111) .................... 377
   11.3 Molecular Dynamics of Nanoparticles ................... 384
   11.4 Applications to Large Numbers of Atoms ................ 387

12 Modeling Photobiology Using Quantum Mechanics and Quantum
   Mechanics/Molecular Mechanics Calculations ................. 397
   Xin Li, Lung Wa Chung, and Keiji Morokuma
   12.1 Introduction .......................................... 397
   12.2 Computational Strategies: Methods and Models .......... 400
   12.3 Applications .......................................... 410
   12.4 Conclusions ........................................... 425

13 Computational Methods for Modeling Free-Radical
   Polymerization ............................................. 435
   Michelle L. Coote and Ching Y. Lin
   13.1 Introduction .......................................... 435
   13.2 Model Reactions for Free-Radical Polymerization
        Kinetics .............................................. 441
   13.3 Electronic Structure Methods .......................... 444
   13.4 Calculation of Kinetics and Thermodynamics ............ 457
   13.5 Conclusions ........................................... 468

14 Evaluation of Nonlinear Optical Properties of Large
   Conjugated Molecular Systems by Long-Range-Corrected
   Density Functional Theory .................................. 475
   Hideo Sekino, Akihide Miyazaki, Jong-Won Song, and
   Kimihiko Hirao
   14.1 Introduction .......................................... 476
   14.2 Nonlinear Optical Response Theory ..................... 478
   14.3 Long-Range-Corrected Density Functional Theory ........ 480
   14.4 Evaluation of Hyperpolarizability for Long 
        Conjugated Systems .................................... 482
   14.5 Conclusions ........................................... 488

15 Calculating the Raman and Hyper Raman Spectra of Large
   Molecules and Molecules Interacting with Nanoparticles ..... 493
   Nicholas Valley, Lasse Jensen, Jochen Autschbach, and
   George C. Schatz
   15.1 Introduction .......................................... 494
   15.2 Displacement of Coordinates Along Normal Modes ........ 496
   15.3 Calculation of Polarizabilities Using TDDFT ........... 496
   15.4 Derivatives of the Polarizabilities with Respect to 
        Normal Modes .......................................... 500
   15.5 Orientation Averaging ................................. 501
   15.6 Differential Cross Sections ........................... 502
   15.7 Surface-Enhanced Raman and Hyper Raman Spectra ........ 506
   15.8 Application of Tensor Rotations to Raman Spectra for
        Specific Surface Orientations ......................... 507
   15.9 Resonance Raman ....................................... 508
   15.10 Determination of Resonant Wavelength ................. 509
   15.11 Summary .............................................. 511

16 Metal Surfaces and Interfaces: Properties from Density
   Functional Theory .......................................... 515
   Irene Yarovsky, Michelle J.S. Spencer, and Ian К. Snook
   16.1 Background, Goals, and Outline ........................ 515
   16.2 Methodology ........................................... 517
   16.3 Structure and Properties of Iron Surfaces ............. 521
   16.4 Structure and Properties of Iron Interfaces ........... 538
   16.5 Summary, Conclusions, and Future Work ................. 553

17 Surface Chemistry and Catalysis from Ab Initio-Based
   Multiscale Approaches ...................................... 561
   Catherine Stampfl and Simone Piccinin
   17.1 Introduction .......................................... 561
   17.2 Predicting Surface Structures and Phase Transitions ... 563
   17.3 Surface Phase Diagrams from Ab Initio Atomistic 
        Thermodynamics ........................................ 568
   17.4 Catalysis and Diffusion from Ab Initio Kinetic Monte
        Carlo Simulations ..................................... 576
   17.5 Summary ............................................... 584

18 Molecular Spintronics ...................................... 589
   Woo Youn Kim and Kwang S. Kim
   18.1 Introduction .......................................... 589
   18.2 Theoretical Background ................................ 591
   18.3 Numerical Implementation .............................. 600
   18.4 Examples .............................................. 604
   18.5 Conclusions ........................................... 612

19 Calculating Molecular Conductance .......................... 615
   Gemma C. Solomon and Mark A. Ratner
   19.1 Introduction .......................................... 615
   19.2 Outline of the NEGF Approach .......................... 617
   19.3 Electronic Structure Challenges ....................... 623
   19.4 Chemical Trends ....................................... 625
   19.5 Features of Electronic Transport ...................... 630
   19.6 Applications .......................................... 634
   19.7 Conclusions ........................................... 639

Index ......................................................... 649


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 15,843 bytes.
Посещение N 1591 c 06.11.2012