Gicquel R. Energy systems: a new approach to engineering thermodynamics (Boca Raton; London, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGicquel R. Energy systems: a new approach to engineering thermodynamics. - Boca Raton; London: CRC Press, 2012. - xlix, 1012 p.: ill. - Incl. bibl. ref. - Ind.: p.1005-1012. - ISBN-13 978-0-415-68500-9
 

Оглавление / Contents
 
Searching References in the Thermoptim Unit .................. xxiv
Foreword by John W. Mitchell .................................. xxv
Foreword by Alain Lambotte .................................. xxvii
About the Author ............................................. xxix
General introduction ......................................... xxxi
   Structure of the book ..................................... xxxi
   Objectives of this book ................................. xxxiii
   A working tool on many levels ............................ xxxiv
Mind Maps .................................................... xxxv
List of Symbols ............................................... xli
Conversion Factors ........................................... xlix

1   First Steps in Engineering Thermodynamics ................... 1

1  A New Educational Paradigm ................................... 3
   1.1  Introduction ............................................ 3
   1.2  General remarks on the evolution of training
        specifications .......................................... 4
   1.3  Specifics of applied thermodynamics teaching ............ 4
   1.4  A new educational paradigm .............................. 5
   1.5  Diapason modules ........................................ 7
   1.6  A three-step progressive approach ....................... 9
   1.7  Main pedagogic innovations brought by Thermoptim ....... 10
   1.8  Digital resources of the Thermoptim-UNIT portal ........ 10
   1.9  Comparison with other tools with teaching potential .... 11
   1.10 Conclusion ............................................. 12
   References .................................................. 12
2  First Steps in Thermodynamics: Absolute Beginners ........... 13
   2.1  Architecture of the machines studied ................... 13
        2.1.1  Steam power plant ............................... 13
        2.1.2  Gasturbine ...................................... 14
        2.1.3  Refrigeration machine ........................... 15
   2.2  Four basic functions ................................... 16
   2.3  Notions of thermodynamic system and state .............. 17
   2.4  Energy exchange between a thermodynamic system and
        its surroundings ....................................... 17
   2.5  Conservation of energy: first law of thermodynamics .... 17
   2.6  Application to the four basic functions previously
        identified ............................................. 18
        2.6.1  Compression and expansion with work ............. 18
        2.6.2  Expansion without work: valves, filters ......... 19
        2.6.3  Heat exchange ................................... 19
        2.6.4  Combustion chambers, boilers .................... 19
   2.7  Reference processes .................................... 19
        2.7.1  Compression and expansion with work ............. 19
        2.7.2  Expansion without work: valves, filters ......... 20
        2.7.3  Heat exchange ................................... 20
        2.7.4  Combustion chambers, boilers .................... 20
   2.8  Summary reminders on pure substance properties ......... 20
   2.9  Return to the concept of state and choice of state
        variables to consider .................................. 21
   2.10 Thermodynamic charts ................................... 21
        2.10.1 Different types of charts ....................... 22
        2.10.2 (h, ln(P)) chart ................................ 22
   2.11 Plot of cycles in the (h, ln(P)) chart ................. 23
        2.11.1 Steam power plant ............................... 24
        2.11.2 Refrigeration machine ........................... 26
   2.12 Modeling cycles with Thermoptim ........................ 29
        2.12.1 Steam power plant ............................... 30
        2.12.2 Gasturbine ...................................... 31
        2.12.3 Refrigeration machine ........................... 31
   2.13 Conclusion ............................................. 32
3  First Steps in Thermodynamics: Entropy and the Second Law ... 35
   3.1  Heat in thermodynamic systems .......................... 35
   3.2  Introduction of entropy ................................ 36
   3.3  Second law of thermodynamics ........................... 37
        3.3.1  Limits of the first law of thermodynamics ....... 37
        3.3.2  Concept of irreversibility ...................... 37
        3.3.3  Heat transfer inside an isolated system,
               conversion of heat into work .................... 37
        3.3.4  Statement of the second law ..................... 38
   3.4  (T, s) Entropy chart ................................... 38
   3.5  Carnot effectiveness of heat engines ................... 40
   3.6  Irreversibilities in industrial processes .............. 41
        3.6.1  Heat exchangers ................................. 41
        3.6.2  Compressors and turbines ........................ 41
   3.7  Plot of cycles in the entropy chart, qualitative
        comparison with the carnot cycle ....................... 41
        3.7.1  Steam power plant ............................... 41
        3.7.2  Gas turbine ..................................... 43
        3.7.3  Refrigeration machine ........................... 44
   3.8  Conclusion ............................................. 45

2  Methodology, Thermodynamics Fundamentals, Thermoptim,
   Components .................................................. 47

4  Introduction ................................................ 49
   4.1  A two-level methodology ................................ 49
        4.1.1  Physical phenomena taking place in a gas
               turbine ......................................... 49
        4.1.2  Energy technologies: component assemblies ....... 50
        4.1.3  Generalities about numerical models ............. 51
   4.2  Practical implementation of the double analytical-
        systems approach ....................................... 52
   4.3  Methodology ............................................ 54
        4.3.1  Systems modeling: the General System ............ 54
        4.3.2  Systems-analysis of energy technologies ......... 55
        4.3.3  Component modeling .............................. 56
        4.3.4  Thermoptim primitive types ...................... 57
        4.3.5  Thermoptim assets ............................... 62
   References .................................................. 62
5  Thermodynamics Fundamentals ................................. 63
   5.1  Basic concepts, definitions ............................ 63
        5.1.1  Open and closed systems ......................... 64
        5.1.2  State of a system, intensive and extensive
               quantities ...................................... 65
        5.1.3  Phase, pure substances, mixtures ................ 66
        5.1.4  Equilibrium, reversible process ................. 66
        5.1.5  Temperature ..................................... 66
        5.1.6  Symbols ......................................... 67
   5.2  Energy exchanges in a process .......................... 67
        5.2.1  Work δW of external forces on a closed system ... 67
        5.2.2  Heat transfer ................................... 68
   5.3  First law of thermodynamics ............................ 69
        5.3.1  Definition of internal energy U (closed
               system) ......................................... 70
        5.3.2  Application to a fluid mass ..................... 70
        5.3.3  Work provided, shaft work τ ..................... 71
        5.3.4  Shaft work and enthalpy (open systems) .......... 73
        5.3.5  Establishment of enthalpy balance ............... 74
        5.3.6  Application to industrial processes ............. 75
   5.4  Second law of thermodynamics ........................... 76
        5.4.1  Definition of entropy ........................... 77
        5.4.2  Irreversibility ................................. 78
        5.4.3  Carnot effectiveness of heat engines ............ 79
        5.4.4  Fundamental relations for a phase ............... 81
        5.4.5  Thermodynamic potentials ........................ 82
   5.5  Exergy ................................................. 83
        5.5.1  Presentation of exergy for a monotherm open
               system in steady state .......................... 84
        5.5.2  Multithermal open steady-state system ........... 85
        5.5.3  Application to a two-source reversible
               machine ......................................... 86
        5.5.4  Special case: heat exchange without work
               production ...................................... 86
        5.5.5  Exergy efficiency ............................... 86
   5.6  Representation of substance properties ................. 87
        5.6.1  Solid, liquid, gaseous phases ................... 87
        5.6.2  Perfect and ideal gases ......................... 88
        5.6.3  Ideal gas mixtures .............................. 93
        5.6.4  Liquids and solids .............................. 95
        5.6.5  Liquid-vapor equilibrium of a pure substance .... 96
        5.6.6  Representations of real fluids .................. 97
        5.6.7  Moist mixtures ................................. 117
        5.6.8  Real fluid mixtures ............................ 124
   References ................................................. 136
   Further reading ............................................ 136
6  Presentation of Thermoptim ................................. 137
   6.1  General ............................................... 137
        6.1.1  Initiation applets ............................. 138
        6.1.2  Interactive charts ............................. 139
        6.1.3  Thermoptim's five working environments ......... 139
   6.2  Diagram editor ........................................ 142
        6.2.1   Presentation of the editor .................... 142
        6.2.2  Graphical component properties ................. 142
        6.2.3  Links between the simulator and the diagrams ... 144
   6.3  Simulation environment ................................ 146
        6.3.1  Main project screen ............................ 146
        6.3.2  Main menus ..................................... 148
        6.3.3  Export of the results in the form of text
               file ........................................... 149
        6.3.4  Point screen ................................... 149
        6.3.5  Point moist properties calculations ............ 153
        6.3.6  Node screen .................................... 155
   6.4  Extension of Thermoptim by external classes ........... 157
        6.4.1  Extension system for Thermoptim by adding
               external classes ............................... 157
        6.4.2  Software implementation ........................ 158
        6.4.3  Viewing available external classes ............. 159
        6.4.4  Representation of an external component in
               the diagram editor ............................. 160
        6.4.5  Loading an external class ...................... 160
        6.4.6  Practical realization of an external class ..... 160
   6.5  Different versions of Thermoptim ...................... 161
7  Basic Components and Processes ............................. 163
   7.1  Compressions .......................................... 163
        7.1.1  Thermodynamics of compression .................. 164
        7.1.2  Reference compression .......................... 164
        7.1.3  Actual compressions ............................ 166
        7.1.4  Staged compression ............................. 174
        7.1.5  Calculation of a compression И in Thermoptim ... 175
   7.2  Displacement compressors .............................. 177
        7.2.1  Piston compressors ............................. 177
        7.2.2  Screw compressors .............................. 182
        7.2.3  Criteria for the choice between displacement
               compressors .................................... 185
   7.3  Dynamic compressors ................................... 185
        7.3.1  General ........................................ 185
        7.3.2  Thermodynamics of permanent flow ............... 186
        7.3.3  Similarity and performance of turbomachines .... 192
        7.3.4  Practical calculation of dynamic compressors ... 197
        7.3.5  Pumps and fans ................................. 199
   7.4  Comparison of the various types of compressors ........ 199
        7.4.1  Comparison of dynamic and displacement
               compressors .................................... 199
        7.4.2  Comparison between dynamic compressors ......... 200
   7.5  Expansion ............................................. 201
        7.5.1  Thermodynamics of expansion .................... 201
        7.5.2  Calculation of an expansion in Thermoptim ...... 203
        7.5.3  Turbines ....................................... 203
        7.5.4  Turbine performance maps ....................... 204
        7.5.5  Degree of reaction of a stage .................. 205
   7.6  Combustion ............................................ 206
        7.6.1  Combustion phenomena, basic mechanisms ......... 206
        7.6.2  Study of complete combustion ................... 213
        7.6.3  Study of incomplete combustion ................. 216
        7.6.4  Energy properties of combustion reactions ...... 225
        7.6.5  Emissions of gaseous pollutants ................ 234
        7.6.6  Calculation of combustion mm in Thermoptim ..... 235
        7.6.7  Technological aspects .......................... 239
   7.7  Throttling or flash ................................... 241
   7.8  Water vapor/gas mixtures processes .................... 242
        7.8.1  Moist process screens .......................... 242
        7.8.2  Moist mixers ................................... 243
        7.8.3  Heating a moist mixture ........................ 245
        7.8.4  Cooling of moist mix ........................... 245
        7.8.5  Humidification of a gas ........................ 248
        7.8.6  Dehumidification of a mix by desiccation ....... 251
        7.8.7  Determination of supply conditions ............. 253
        7.8.8  Air conditioning processes in a psychrometric
               chart .......................................... 255
   7.9  Examples of components represented by external
        classes ............................................... 256
        7.9.1  Nozzles ........................................ 256
        7.9.2  Diffusers ...................................... 260
        7.9.3  Ejectors ....................................... 264
   References ................................................. 268
   Further reading ............................................ 269
8  Heat Exchangers ............................................ 271
   8.1  Principles of operation of a heat exchanger ........... 271
        8.1.1  Heat flux exchanged ............................ 273
        8.1.2  Heat exchange coefficient U .................... 274
        8.1.3  Fin effectiveness .............................. 275
        8.1.4  Values of convection coefficients h ............ 275
   8.2  Phenomenological models for the calculation of heat
        exchangers ............................................ 276
        8.2.1  Number of transfer units method ................ 276
        8.2.2  Relationship between NTU and e ................. 278
        8.2.3  Matrix formulation ............................. 282
        8.2.4  Heat exchanger assemblies ...................... 283
        8.2.5  Relationship with the LMTD method .............. 287
        8.2.6  Heat exchanger pinch ........................... 287
   8.3  Calculation of heat exchangers in Thermoptim .......... 288
        8.3.1  "Exchange" processes ........................... 288
        8.3.2  Creation of a heat exchanger in the diagram
               editor ......................................... 289
        8.3.3  Heat exchanger screen .......................... 290
        8.3.4  Simple heat exchanger design ................... 290
        8.3.5  Generic liquid ................................. 292
        8.3.6  Off-design calculation of heat exchangers ...... 292
        8.3.7  Thermocouplers ................................. 294
   8.4  Technological aspects ................................. 296
        8.4.1  Tube exchangers ................................ 296
        8.4.2  Plate heat exchangers .......................... 297
        8.4.3  Other types of heat exchangers ................. 298
   8.5  Summary ............................................... 299
   References ................................................. 299
   Further reading ............................................ 299
9  Examples of Applications ................................... 301
   9.1  Steam power plant cycle ............................... 301
        9.1.1  Principle of the machine and problem data ...... 301
        9.1.2  Creation of the diagram ........................ 302
        9.1.3  Creation of simulator elements ................. 306
        9.1.4  Setting points ................................. 307
        9.1.5  Setting of processes ........................... 308
        9.1.6  Plotting the cycle on thermodynamic chart ...... 309
        9.1.7  Design of condenser ............................ 311
        9.1.8  Cycle improvements ............................. 315
        9.1.9  Modification of the model ...................... 316
   9.2  Single stage compression refrigeration cycle .......... 318
        9.2.1  Principle of the machine and problem data ...... 318
        9.2.2  Creation of the diagram ........................ 319
        9.2.3  Creation of simulator elements ................. 323
        9.2.4  Setting points ................................. 324
        9.2.5  Setting of processes ........................... 325
   9.3  Gas turbine cycle ..................................... 327
        9.3.1  Principle of the machine and problem data ...... 327
        9.3.2  Creation of the diagram ........................ 327
        9.3.3  Creation of simulator elements ................. 330
        9.3.4  Setting points ................................. 331
        9.3.5  Setting of processes ........................... 331
   9.4  Air conditioning installation ......................... 335
        9.4.1  Principle of installation and problem data ..... 335
        9.4.2  Supply conditions .............................. 336
        9.4.3  Properties of the mix (outdoor air/recycled
               air) ........................................... 337
        9.4.4  Air treatment .................................. 338
        9.4.5  Plot on the psychrometric chart ................ 339
10 General Issues on Cycles, Energy and Exergy Balances ....... 341
   10.1 General issues on cycles, notations ................... 341
        10.1.1 Motorcycles .................................... 342
        10.1.2 Refrigeration cycles ........................... 342
        10.1.3 Carnot cycle ................................... 343
        10.1.4 Regeneration cycles ............................ 343
        10.1.5 Theoretical and real cycles .................... 344
        10.1.6 Notions of efficiency and effectiveness ........ 344
   10.2 Energy and exergy balance ............................. 345
        10.2.1 Energy balances ................................ 345
        10.2.2 Exergy balances ................................ 346
        10.2.3 Practical implementation in a spreadsheet ...... 347
        10.2.4 Exergy balances of complex cycles .............. 350
   10.3 Productive structures ................................. 350
        10.3.1 Establishment of a productive structure ........ 350
        10.3.2 Relationship between the diagram and the
               productive structure ........................... 351
        10.3.3 Implementation in Thermoptim ................... 353
        10.3.4 Automation of the creation of the productive
               structure ...................................... 355
        10.3.5 Examples ....................................... 357
        10.3.6 Conclusion ..................................... 365
   References ................................................. 365

3  Main Conventional Cycles ................................... 367

11 Introduction: Changing Technologies ........................ 369
   11.1 Limitation of fossil resources and geopolitical
        constraints ........................................... 370
   11.2 Local and global environmental impact of energy ....... 373
        11.2.1 Increase in global greenhouse effect ........... 373
        11.2.2 Reduction of the ozone layer ................... 375
        11.2.3 Urban pollution and acid rain .................. 376
   11.3 Technology transfer from other sectors ................ 379
   11.4 Technological innovation key to energy future ......... 380
   References ................................................. 381
   Further reading ............................................ 381
12 Internal Combustion Turbomotors ............................ 383
   12.1 Gasturbines ........................................... 383
        12.1.1 Operating principles ........................... 383
        12.1.2 Examples of gas turbines ....................... 385
        12.1.3 Major technological constraints ................ 386
        12.1.4 Basic cycles ................................... 390
        12.1.5 Cycle improvements ............................. 398
        12.1.6 Mechanical configurations ...................... 405
        12.1.7 Emissions of pollutants ........................ 411
        12.1.8 Outlook for gas turbines ....................... 411
   12.2 Aircraft engines ...................................... 413
        12.2.1 Turbojet and turboprop engines ................. 413
        12.2.2 Reaction engines without rotating machine ...... 431
   References ................................................. 436
   Further reading ............................................ 437
13 Reciprocating Internal Combustion Engines .................. 439
   13.1 General operation mode ................................ 440
        13.1.1 Four-and two-stroke cycles ..................... 443
        13.1.2 Methods of cooling ............................. 445
   13.2 Analysis of theoretical cycles of reciprocating
        engines ............................................... 446
        13.2.1 Beau de Rochas ideal cycle ..................... 446
        13.2.2 Diesel cycle ................................... 448
        13.2.3 Mixed cycle .................................... 449
        13.2.4 Theoretical associated cycles .................. 451
   13.3 Characteristic curves of piston engines ............... 452
        13.3.1 Effective performance, МЕР and power factor .... 453
        13.3.2 Influence of the rotation speed ................ 453
        13.3.3 Indicated performance, IMEP .................... 455
        13.3.4 Effective performance, МЕР ..................... 457
        13.3.5 Specific consumption of an engine .............. 458
   13.4 Gasoline engine ....................................... 461
        13.4.1 Limits of knocking and octane number ........... 461
        13.4.2 Strengthening of turbulence .................... 462
        13.4.3 Formation of fuel mix, fuel injection
               electronic systems ............................. 463
        13.4.4 Real cycles of gasoline engines ................ 465
   13.5 Diesel engines ........................................ 470
        13.5.1  Compression ignition conditions ............... 470
        13.5.2 Ignition and combustion delays ................. 470
        13.5.3 Air utilization factor ......................... 472
        13.5.4 Thermal and mechanical fatigue ................. 473
        13.5.5 Cooling of walls ............................... 474
        13.5.6 Fuels burnt in diesel engines .................. 474
        13.5.7 Real cycles of diesel engines .................. 474
   13.6 Design of reciprocating engines ....................... 476
   13.7 Supercharging ......................................... 478
        13.7.1 General ........................................ 478
        13.7.2 Basic principles ............................... 478
        13.7.3 Conditions of autonomy of a turbocharger ....... 480
        13.7.4 Adaptation of the turbocharger ................. 480
        13.7.5 Conclusions on supercharging ................... 482
   13.8 Engine and pollutant emission control ................. 482
        13.8.1 Emissions of pollutants: Mechanisms involved ... 482
        13.8.2 Combustion optimization ........................ 483
        13.8.3 Catalytic purification converters .............. 486
        13.8.4 Case of diesel engines ......................... 489
   13.9 Technological prospects ............................... 491
        13.9.1 Traction engines ............................... 491
        13.9.2 Large gas and diesel engines ................... 495
   References ................................................. 496
   Further reading ............................................ 496
14 Stirling Engines ........................................... 499
   14.1 Principle of operation ................................ 500
   14.2 Piston drive .......................................... 502
   14.3 Thermodynamic analysis of Stirling engines ............ 503
        14.3.1 Theoretical cycle .............................. 503
        14.3.2 Ideal Stirling cycle ........................... 504
        14.3.3 Paraisothermal Stirling cycle .................. 506
   14.4 Influence of the pressure ............................. 508
   14.5 Choice of the working fluid ........................... 508
   14.6 Heat exchangers ....................................... 509
        14.6.1 Cooler ......................................... 509
        14.6.2 Regenerator .................................... 509
        14.6.3 Boiler ......................................... 509
   14.7 Characteristics of a Stirling engine .................. 510
   14.8 Simplified Stirling engine Thermoptim model ........... 512
   References ................................................. 513
   Further reading ............................................ 513
15 Steam Facilities (General) ................................. 515
   15.1 Introduction .......................................... 515
   15.2 Steam enthalpy and exergy ............................. 515
   15.3 General configuration of steam facilities ............. 517
   15.4 Water deaeration ...................................... 518
        15.4.1 Chemical deaeration ............................ 518
        15.4.2 Thermal deaeration ............................. 519
   15.5 Blowdown .............................................. 519
   15.6 Boiler and steam generators ........................... 520
        15.6.1 Boilers ........................................ 520
        15.6.2 Steam generators ............................... 522
        15.6.3 Boiler operation ............................... 523
        15.6.4 Optimization of pressure level ................. 524
   15.7 Steam turbines ........................................ 525
        15.7.1 Different types of steam turbines .............. 525
        15.7.2 Behavior in off-design mode .................... 527
        15.7.3 Degradation of expansion efficiency function
               of steam quality ............................... 528
        15.7.4 Temperature control by desuperheating .......... 529
   15.8 Condensers, cooling towers ............................ 529
        15.8.1 Principle of operation of cooling towers ....... 530
        15.8.2 Phenomenological model ......................... 530
        15.8.3 Behaviour models ............................... 533
        15.8.4 Modeling a direct contact cooling tower in
               Thermoptim ..................................... 539
   References ................................................. 539
   Further reading ............................................ 540
16 Classical Steam Power Cycles ............................... 541
   16.1 Conventional flame power cycles ....................... 541
        16.1.1 Basic Hirn or Rankine cycle with
               superheating ................................... 541
        16.1.2 Energy and exergy balance ...................... 545
        16.1.3 Thermodynamic limits of simple Hirn cycle ...... 546
        16.1.4 Cycle with reheat .............................. 547
        16.1.5 Cycle with extraction .......................... 548
        16.1.6 Supercritical cycles ........................... 550
        16.1.7 Binary cycles .................................. 551
   16.2 Technology of flame plants ............................ 553
        16.2.1 General technological constraints .............. 554
        16.2.2 Main coal power plants ......................... 555
        16.2.3 Emissions of pollutants ........................ 557
   16.3 Nuclear power plant cycles ............................ 557
        16.3.1 Primary circuit ................................ 558
        16.3.2 Steam generator ................................ 559
        16.3.3 Secondary circuit .............................. 561
        16.3.4 Industrial PWR evolution ....................... 564
   Reference .................................................. 564
   Further reading ............................................ 564
17 Combined Cycle Power Plants ................................ 567
   17.1 Combined cycle without afterburner .................... 568
        17.1.1 Overall performance ............................ 568
        17.1.2 Reduced efficiency and power ................... 569
   17.2 Combined cycle with afterburner ....................... 570
   17.3 Combined cycle optimization ........................... 570
   17.4 Gas turbine and combined cycles variations ............ 575
   17.5 Diesel combined cycle ................................. 575
   17.6 Conclusions and outlook ............................... 575
   References ................................................. 576
   Further reading ............................................ 576
18 Cogeneration and Trigeneration ............................. 577
   18.1 Performance indicators ................................ 578
   18.2 Boilers and steam turbines ............................ 579
   18.3 Internal combustion engines ........................... 580
        18.3.1 Reciprocating engines .......................... 580
        18.3.2 Gasturbines .................................... 581
   18.4 Criteria for selection ................................ 583
   18.5 Examples of industrial plants ......................... 583
        18.5.1 Micro-gas turbine cogeneration ................. 583
        18.5.2 Industrial gas turbine cogeneration ............ 584
   18.6 Trigeneration ......................................... 589
        18.6.1 Production of central heating and cooling for
               a supermarket .................................. 589
        18.6.2 Trigeneration by micro turbine and absorption
               cycle .......................................... 589
   References ................................................. 595
   Further reading ............................................ 595
19 Compression Refrigeration Cycles, Heat Pumps ............... 597
   19.1 Principles of operation ............................... 597
   19.2 Current issues ........................................ 598
        19.2.1 Stopping CFC production ........................ 598
        19.2.2 Substitution of fluids ......................... 599
   19.3 Basic refrigeration cycle ............................. 601
        19.3.1 Principle of operation ......................... 601
        19.3.2 Energy and exergy balances ..................... 603
   19.4 Superheated and sub-cooled cycle ...................... 606
        19.4.1 Single-stage cycle without heat exchanger ...... 606
        19.4.2 Single-stage cycle with exchanger .............. 606
   19.5 Two-stage cycles ...................................... 607
        19.5.1 Two-stage compression cycle with intermediate
               cooling ........................................ 607
        19.5.2 Compression and expansion multistage cycles .... 608
   19.6 Special cycles ........................................ 614
        19.6.1 Cascade cycles ................................. 614
        19.6.2 Cycles using blends ............................ 615
        19.6.3 Cycles using ejectors .......................... 617
        19.6.4 Reverse Bray ton cycles ........................ 622
   19.7 Heat pumps ............................................ 624
        19.7.1 Basic cycle .................................... 625
        19.7.2 Exergy balance ................................. 626
   19.8 Technological aspects ................................. 627
        19.8.1 Desirable properties for fluids ................ 627
        19.8.2 Refrigeration compressors ...................... 628
        19.8.3 Expansion valves ............................... 631
        19.8.4 Heat exchangers ................................ 631
        19.8.5 Auxiliary devices .............................. 633
        19.8.6 Variable speed ................................. 633
   References ................................................. 633
   Further reading ............................................ 634
20 Liquid Absorption Refrigeration Cycles ..................... 635
   20.1 Introduction .......................................... 635
   20.2 Study of a NH3-H2Q absorption cycle ................... 636
   20.3  Modeling LiBr-H20 absorption cycle in Thermoptim ..... 642
   References ................................................. 643
21 Air Conditioning ........................................... 645
   21.1 Basics of an air conditioning system .................. 645
   21.2 Examples of cycles .................................... 647
        21.2.1 Summer air conditioning ........................ 648
        21.2.2 Winter air conditioning ........................ 649
   References ................................................. 652
   Further reading ............................................ 652
22 Optimization by Systems Integration ........................ 653
   22.1 Basic principles ...................................... 654
        22.1.1 Pinch point .................................... 654
        22.1.2 Integration of complex heat system ............. 655
   22.2 Design of exchanger networks .......................... 658
   22.3 Minimizing the pinch .................................. 659
        22.3.1 Implementation of the algorithm ................ 660
        22.3.2 Establishment of actual composite curves ....... 663
        22.3.3 Plot of the Carnot factor difference curve
               (CFDC) ......................................... 663
        22.3.4 Matching exchange streams ...................... 665
        22.3.5 Thermal machines and heat integration .......... 670
   22.4 Optimization by irreversibility analysis .............. 671
        22.4.1 Component irreversibility and systemic
               irreversibility ................................ 671
        22.4.2 Optimization method ............................ 674
   22.5 Implementation in Thermoptim .......................... 676
        22.5.1 Principle ...................................... 676
        22.5.2 Optimization frame ............................. 677
   22.6 Example ............................................... 682
        22.6.1 Determination of HP and LP flow rates .......... 683
        22.6.2 Matching fluids in heat exchangers ............. 684
   References ................................................. 690
   Further reading ............................................ 690

4  Innovative Advanced Cycles, including Low Environmental
   Impact ..................................................... 691

23 External Class Development ................................. 693
   23.1 General, external substances .......................... 693
        23.1.1 Introducing custom components .................. 693
        23.1.2 Simple substance: example of DowTherm A ........ 696
        23.1.3 Coupling to a thermodynamic properties
               server ......................................... 697
   23.2 Flat plate solar collectors ........................... 699
        23.2.1  Design of the external component .............. 699
   23.3 Calculation of moist mixtures in external classes ..... 702
        23.3.1 Introduction ................................... 702
        23.3.2 Methods available in the external classes ...... 703
   23.4 External combustion ................................... 707
        23.4.1 Model of biomass combustion .................... 707
        23.4.2 Presentation of the external class ............. 710
   23.5 Cooling coil with condensation ........................ 710
        23.5.1 Modeling a cooling coil with condensation in
               Thermoptim ..................................... 711
        23.5.2 Study of the external class
               Dehumidifying Coil ............................. 712
   23.6 Cooling towers ........................................ 715
        23.6.1 Modeling of a direct contact cooling tower in
               Thermoptim ..................................... 716
        23.6.2 Study of external class Direct Cooling Tower ... 719
   23.7 External drivers ...................................... 721
        23.7.1 Stirling engine driver ......................... 721
        23.7.2 Creation of the class: visual interface ........ 722
        23.7.3 Recognition of component names ................. 723
        23.7.4 Calculations and display ....................... 723
   23.8 External class manager ................................ 724
24 Advanced Gas Turbines Cycles ............................... 727
   24.1 Humid air gas turbine ................................. 727
   24.2 Supercritical CO2 cycles .............................. 732
        24.2.1 Simple regeneration cycle ...................... 732
        24.2.2 Pre-compression cycle .......................... 733
        24.2.3 Recompression cycle ............................ 734
        24.2.4 Partial cooling cycle .......................... 736
   24.3 Advanced combined cycles .............................. 737
        24.3.1 Air combined cycle ............................. 737
        24.3.2 Steam flash combined cycle ..................... 739
        24.3.3 Steam recompression combined cycle ............. 741
        24.3.4 Kalina cycle ................................... 741
   References ................................................. 750
25 Evaporation, Mechanical Vapor Compression, Desalination,
   Drying by Hot Gas .......................................... 751
   25.1 Evaporation ........................................... 751
        25.1.1 Single-effect cycle ............................ 751
        25.1.2 Multi-effect cycle ............................. 752
        25.1.3 Boiling point elevation ........................ 753
   25.2 Mechanical vapor compression .......................... 754
        25.2.1 Evaporative mechanical vapor compression
               cycle .......................................... 754
        25.2.2 Types of compressors used ...................... 755
        25.2.3 Design parameters of a VC ...................... 755
   25.3 Desalination .......................................... 757
        25.3.1 Simple effect distillation ..................... 757
        25.3.2 Double effect desalination cycle ............... 758
        25.3.3 Mechanical vapor compression desalination
               cycle .......................................... 758
        25.3.4 Desalination ejector cycle ..................... 758
        25.3.5 Multi-stage flash desalination cycle ........... 759
        25.3.6 Reverse osmosis desalination ................... 761
   25.4 Drying by hot gas ..................................... 764
   References ................................................. 766
26 Cryogenic Cycles ........................................... 767
   26.1  Joule-Thomson isenthalpic expansion process .......... 767
        26.1.1 Basic cycle .................................... 767
        26.1.2 Linde cycle .................................... 769
        26.1.3 Linde cycles for nitrogen liquefaction ......... 770
   26.2 Reverse Brayton cycle ................................. 772
   26.3 Mixed processes: Claude cycle ......................... 773
   26.4 Cascade cycles ........................................ 774
   References ................................................. 775
27 Electrochemical Converters ................................. 777
   27.1 Fuel cells ............................................ 777
        27.1.1 SOFC modeling .................................. 780
        27.1.2 Improving the cell model ....................... 782
        27.1.3 Model with a thermocoupler ..................... 784
        27.1.4 Coupling SOFC fuel cell with a gas turbine ..... 784
        27.1.5 Change in the model to replace H2 by CH4 ....... 786
   27.2 Reforming ............................................. 789
        27.2.1 Modeling of a reformer in Thermoptim ........... 789
        27.2.2 Results ........................................ 792
   27.3 Electrolysers ......................................... 792
        27.3.1 Modeling of a high temperature electrolyser
               in Thermoptim .................................. 793
        27.3.2 Results ........................................ 794
   References ................................................. 795
28 Global Warming and Capture and Sequestration of CO2 ........ 797
   28.1 Problem data .......................................... 797
   28.2 Carbon capture and storage ............................ 798
        28.2.1 Introduction ................................... 798
        28.2.2 Capture strategies ............................. 800
   28.3 Techniques implemented ................................ 801
        28.3.1 Post-combustion techniques ..................... 801
        28.3.2 Pre-combustion techniques ...................... 804
        28.3.3 Oxycombustion techniques ....................... 814
   References ................................................. 825
29 Future Nuclear Reactors .................................... 827
   29.1 Introduction .......................................... 827
   29.2 Reactors coupled to Hirn cycles ....................... 829
        29.2.1 Sodium cooled fast neutron reactors ............ 829
        29.2.2 Supercritical water reactors ................... 830
   29.3 Reactors coupled to Brayton cycles .................... 830
        29.3.1 Small capacity modular reactor PBMR ............ 831
        29.3.2 GT-MHR reactors ................................ 832
        29.3.3 Very high temperature reactors ................. 833
        29.3.4 Gas cooled fast neutron reactors ............... 834
        29.3.5 Lead cooled fast reactors ...................... 834
        29.3.6 Molten salt reactors ........................... 834
        29.3.7 Thermodynamic cycles of high temperature
               reactors ....................................... 835
   29.4 Summary ............................................... 840
   References ................................................. 840
30 Solar Thermodynamic Cycles ................................. 841
   30.1  Direct conversion of solar energy .................... 841
        30.1.1  Introduction .................................. 841
        30.1.2  Thermal conversion of solar energy ............ 842
        30.1.2  Thermodynamic cycles considered ............... 844
   30.2 Performance of solar collectors ....................... 845
        30.2.1 Low temperature solar collectors ............... 845
        30.2.2 Low temperature flat plate solar collector
               model .......................................... 846
        30.2.3 High temperature solar collectors .............. 847
        30.2.4 Modeling high temperature concentration
               collectors ..................................... 847
   30.3 Parabolic trough plants ............................... 849
        30.3.1 Optimization of the collector temperature ...... 849
        30.3.2 Plant model .................................... 850
   30.4 Parabolic dish systems ................................ 851
   30.5 Power towers .......................................... 852
   30.6 Hybrid systems ........................................ 853
   References ................................................. 854
31 Other than Solar NRE cycles ................................ 855
   31.1 Solar ponds ........................................... 855
        31.1.1 Analysis of the problem ........................ 856
        31.1.2 Plot of the cycle in the entropy chart ......... 857
        31.1.3 Exergy balance ................................. 857
        31.1.4 Auxiliary consumption .......................... 857
   31.2 Ocean thermal energy conversion (OTEC) ................ 858
        31.2.1 OTEC closed cycle .............................. 859
        31.2.2 OTEC open cycle ................................ 861
        31.2.3 Uehara cycle ................................... 862
   31.3 Geothermal cycles ..................................... 864
        31.3.1 Direct-steam plants ............................ 865
        31.3.2 Simple flash plant ............................. 865
        31.3.3 Double flash plant ............................. 867
        31.3.4 Binary cycle plants ............................ 868
        31.3.5 Kalina cycle ................................... 869
        31.3.6 Combined cycles ................................ 870
        31.3.7 Mixed cycle .................................... 872
   31.4 Use of biomass energy ................................. 873
        31.4.1 Introduction ................................... 873
        31.4.2 Modeling thermochemical conversion ............. 875
   References ................................................. 878
32 Heat and Compressed Air Storage ............................ 879
   32.1 Introduction .......................................... 879
   32.2 Methodological aspects ................................ 880
   32.3 Cold storage in phase change nodules .................. 881
   32.4 Project Sether (electricity storage as high
        temperature heat) ..................................... 881
   32.5 Compressed air storage devices ........................ 883
        32.5.1 CAES (Compressed Air Energy Storage) concept ... 883
        32.5.2 Peaker concept of Electricite de Marseille
               Company ........................................ 884
        32.5.3 Hydropneumatic energy storage HPES ............. 884
   References ................................................. 887
33 Calculation of Thermodynamic Solar Installations ........... 889
   33.1 Specific solar problems ............................... 889
   33.2 Estimation of the solar radiation received by
        a solar collector ..................................... 891
   33.3 Cumulative frequency curves of irradiation ............ 893
        33.3.1 Curve construction ............................. 894
        33.3.2 Curve smoothing ................................ 894
        33.3.3 Estimation of CFCS from empirical formulas ..... 895
        33.3.4 Interpolation on tilt .......................... 896
   33.4 Hourly simulation models .............................. 896
   33.5 Simplified design methods ............................. 897
        33.5.1 Principle of methods ........................... 897
        33.5.2 Usability curves ............................... 897
   References ................................................. 899

5  Technological Design and Off-design Operation .............. 901

34 Technological Design and Off-design Operation, Model
   Reduction .................................................. 903
   34.1 Introduction .......................................... 903
   34.2 Component technological design ........................ 905
        34.2.1 Heat exchangers ................................ 906
        34.2.2 Displacement compressors ....................... 908
        34.2.3 Expansion valves ............................... 909
        34.2.4 Practical example: design of a cycle ........... 909
   34.3 Off-design calculations ............................... 914
        34.3.1 Principle of computing coupled systems in
               Thermoptim ..................................... 914
        34.3.2 Off-design equations of the refrigerator ....... 915
        34.3.3 After processing of simulation results ......... 916
        34.3.4 Effect of change in UA ......................... 917
   34.4 Development of simplified models of systems studied ... 919
        34.4.1 Model reduction principle ...................... 919
        34.4.2 Model reduction example ........................ 920
   34.5 Methodological difficulties ........................... 921
   References ................................................. 922
35 Technological Design and Off-design Behavior of Heat
   Exchangers ................................................. 923
   35.1 Introduction .......................................... 923
        35.1.1 General ........................................ 923
        35.1.2 Reminders on the NTU method .................... 924
   35.2 Modeling of heat transfer ............................. 925
        35.2.1 Extended surfaces .............................. 925
        35.2.2 Calculation of Reynolds and Prandtl numbers .... 926
        35.2.3 Calculation of the Nusselt number .............. 927
        35.2.4 Calculation of multi-zone exchangers ........... 929
   35.3 Pressure drop calculation ............................. 933
        35.3.1 Gas or liquid state pressure drop .............. 933
        35.3.2 Two-phase pressure drop ........................ 934
   35.4 Heat exchanger technological screen ................... 935
        35.4.1 Heat exchanger technological screen ............ 935
        35.4.2 Correlations used in Thermoptim ................ 935
   35.5 Model parameter estimation ............................ 937
        35.5.1 Direct setting from geometric data ............. 937
        35.5.2 Identification of exchanger parameters ......... 940
   References ................................................. 941
36 Modeling and Setting of Displacement Compressors ........... 943
   36.1 Behavior models ....................................... 943
        36.1.1 Operation at rated speed and full load ......... 945
        36.1.2 Operation at partial load and speed ............ 947
   36.2 Practical modeling problems ........................... 948
        36.2.1 Technological screen of displacement
               compressors .................................... 948
        36.2.3 Identification of compressor parameters ........ 949
        36.2.4 Calculation in design mode ..................... 949
        36.2.5 Calculation in off-design mode ................. 949
        36.2.6 Fixed V; screw compressors ..................... 949
   References ................................................. 950
37 Modeling and Setting of Dynamic Compressors and Turbines ... 951
   37.1 Supplements on turbomachinery ......................... 952
        37.1.1 Analysis of the velocity triangle .............. 952
        37.1.2 Degree of reaction of one stage ................ 953
        37.1.3 Theoretical characteristics of
               turbomachinery ................................. 954
        37.1.4 Real characteristics of turbomachinery ......... 956
        37.1.5 Factors of similarity .......................... 959
   37.2 Pumps and fans ........................................ 961
   37.3 Dynamic compressors ................................... 963
        37.3.1 Performance maps of dynamic compressors ........ 963
        37.3.2 Analysis of performance maps of dynamic
               compressors .................................... 965
        37.3.3 Technological screen of dynamic compressors .... 970
   37.4 Turbines .............................................. 971
        37.4.1 Performance maps of turbines ................... 972
        37.4.2 Isentropic efficiency law ...................... 973
        37.4.3 Stodola's cone rule ............................ 975
        37.4.4 Baumann rule ................................... 977
        37.4.5 Loss by residual velocity ...................... 978
        37.4.6 Technological screen of turbines ............... 979
        37.4.8 Identification of turbine parameters ........... 979
   37.5 Nozzles ............................................... 979
   References ................................................. 980
38 Case Studies ............................................... 981
   38.1 Introduction .......................................... 981
   38.2 Compressor filling a storage of compressed air ........ 982
        38.2.1 Modeling of the heat exchanger ................. 982
        38.2.2 Design of the driver ........................... 984
        38.2.3 Analysis of the cooled compressor .............. 985
        38.2.4 Use of the model to simulate the filling of
               a compressed air storage ....................... 989
   38.3 Steam power plant ..................................... 990
        38.3.1  Introduction, results ......................... 990
   38.4 Refrigeration machine ................................. 995
        38.4.1 Introduction, results .......................... 995
        38.4.2 Principle of resolution ........................ 996
   38.5 Single flow turbojet .................................. 998
        38.5.1 Introduction, results .......................... 999
        38.5.2 Presentation of the external class ............ 1003

Index ........................................................ 1005


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 59,663 bytes.
Посещение N 1651 c 06.11.2012