Gladush G.G. Physics of laser materials processing: theory and experiment (Berlin; Heidelberg, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGladush G.G. Physics of laser materials processing: theory and experiment / G.G.Gladush, I.Smurov. - Berlin; Heidelberg: Springer, 2011. - xviii, 534 p.: ill. - (Springer series in materials science; 146). - Bibliogr. at the end of the chapters. - Ind.: p.529-534. - ISBN 978-3-642-19242-5; ISSN 0933-033X
 

Оглавление / Contents
 
1  General Problems of Propagation of Laser Radiation
   in Gases and Plasma and Physical Processes on the
   Surface of Condensed Media .................................. 1
   1.1  Propagation and Focusing of Radiation in Vacuum,
        Gases and Plasma ....................................... 2
        1.1.1  Focusing of Light in Vacuum ..................... 2
        1.1.2  Propagation of Laser Radiation in Gases and
               Plasma .......................................... 4
   1.2  Absorption, Reflection, and Propagation of Radiation
        in Cavities in Condensed Media ......................... 8
        1.2.1  Flat Surface .................................... 8
        1.2.2  Propagation of Laser Radiation in a Narrow
               Channel in a Metal ............................. 12
        1.2.3  Waveguide Radiation Propagation Regime ......... 15
        1.2.4  Propagation of Plane-Polarized Radiation
               in a Cylindrical Keyhole ....................... 17
   1.3  Physical Processes on the Surface of Condensed
        Media: The Interaction of Vapor with the Surrounding
        Gas ................................................... 20
        1.3.1  Melting ........................................ 20
        1.3.2  Vaporization ................................... 21
        1.3.3  Melting-Solidification Dynamics Taking
               Vaporization into Account ...................... 22
        1.3.4  Stationary Interaction of a Vapor Jet with
               the Surrounding Gas ............................ 25
   1.4  Vaporization Kinetics and Hydrodynamics ............... 27
        1.4.1  Condensation ................................... 33
   1.5  Instability of the Laser-Induced Vaporization
        of Condensed Media .................................... 36
   References ................................................. 43
2  Mechanisms of Laser Processing of Metal Surfaces ........... 45
   2.1  Thermal Model of Laser Hardening of the Steel
        Surface ............................................... 45
        2.1.1  Qualitative Consideration of the Stationary
               Thermal Model of Metal Hardening ............... 46
        2.1.2  Comparison with Experiments .................... 49
        2.1.3  Numerical Calculations ......................... 52
        2.1.4  Processing of Metal Surfaces by the
               Oscillating Beam of a CO2 Laser ................ 54
   2.2  Hydrodynamical Models of Laser-Induced Alloying
        of Metal Surfaces ..................................... 57
        2.2.1  Analysis of Experimental Data .................. 58
        2.2.2  Theoretical Consideration of Melt Motion
               During Alloying of Metals ...................... 61
        2.2.3  Analytic Consideration of Liquid Metal Motion
               Caused by Thermocapilary Forces ................ 62
        2.2.4  Numerical Modelling of a Melt Flow During
               Alloying ....................................... 64
        2.2.5  Nonlinear Effects and the Instability of the
               Melt Surface Shape in the Marangoni Flow ....... 68
        2.2.6  Development of the Multi-Vortex Structure
               of the Melt Flow ............................... 74
        2.2.7  Influence of Surfactants on Heat-and-Mass
               Transfer During Laser Alloying ................. 78
        2.2.8  Mass-Transfer Kinetics During Gas-Phase
               Alloying ....................................... 80
        2.2.9  Alloying of a Moving Sample Surface by
               Stationary Laser Radiation ..................... 84
        2.2.10 Melt Flow Upon Pulsed and Repetitively Pulses
               Irradiation .................................... 89
        2.2.11 Thermocapillary Processes in the Dynamics
               of Gas Bubbles in a Melt Pool .................. 91
   2.3  Physical Mechanisms of Cladding ....................... 94
   2.4  Mechanisms of Laser-Induced Surface Cleaning ......... 108
        2.4.1  Cleaning of Surfaces from Microparticles ...... 109
        2.4.2  Laser-Induced Solid Surface Cleaning from
               Films ......................................... 111
        2.4.3  Physical Model of Water Surface Cleaning
               from Thin Films of Petroleum Products ......... 114
        2.4.4  Laser-Induced Metal Surface Cleaning from
               Radionuclides ................................. 118
   2.5  Modelling of Selective Laser Melting ................. 122
        2.5.1  Structures .................................... 122
        2.5.2  Heat Conduction of Powders in Vacuum .......... 123
        2.5.3  Calculation of Thermal and Optical Constants
               of Initial Materials .......................... 126
        2.5.4  Volume and Surface Absorption Coefficients .... 127
        2.5.5  Powder Mixtures ............................... 130
        2.5.6  Thermal Model of Selective Laser Sintering .... 132
        2.5.7  Instability of Selective Laser Melting ........ 135
        2.5.8  Thermal Hydrodynamic Model of Selective
               Laser Sintering ............................... 136
   References ................................................ 139
3  Plasma Phenomena in Laser Processing of Materials ......... 145
   3.1  Thermal Properties of the Plasma of Noble and
        Molecular Gases and Metal Vapors ..................... 145
        3.1.1  Plasma Emission ............................... 149
   3.2  Mechanisms of the cw Laser-Induced Breakdown of
        Gases Near Solid Surfaces ............................ 150
        3.2.1  Stationary Breakdown of Gases in the Absence
               of a Target ................................... 150
        3.2.2  Nonequilibrium Mechanism of Optical
               Breakdown in Gases Near a Target .............. 155
        3.2.3  Thermal Model of Optical Breakdown in Gases
               Near a Target ................................. 162
        3.2.4  Theoretical Model ............................. 163
        3.2.5  Numerical Calculation of the Thermal Model .... 166
        3.2.6  Optical Breakdown of Chemically Active Gases
               Near a Target ................................. 168
        3.2.7  Optical Breakdown During Laser Welding ........ 169
   3.3  The Numerical Model of an Erosion Plume During
        Welding .............................................. 172
   3.4  Optical Discharge Burning Near a Sample Surface ...... 173
        3.4.1  Theoretical Models of a Continuous Optical
               Discharge ..................................... 174
        3.4.2  The Heat-Conduction COD Model ................. 177
        3.4.3  COD Model Taking into Account the Heat
               Conduction and Emission of Plasma ............. 179
        3.4.4  Numerical Calculations of Optical Discharge
               Parameters .................................... 182
        3.4.5  The Radiative-Conductive COD Model ............ 186
   3.5  LCWs and a COD in a Gas Flow ......................... 187
        3.5.1  Light Combustion Wave ......................... 188
        3.5.2  Combustion Wave Supported Due to Thermal
               Radiation Transfer ............................ 191
        3.5.3  Continuous Optical Discharge in a Gas Flow .... 192
        3.5.4  Optical Discharge in a Gas-Vapor Keyhole ...... 202
   3.6  Laser Plasmatron and Deposition of Films ............. 204
        3.6.1  Physical Processes in Optical Plasmatrons ..... 204
        3.6.2  High-Pressure Plasmatron ...................... 206
   References ................................................ 208
4  Properties and Mechanisms of Deep Melting of Materials
   by a cw Laser Beam ........................................ 211
   4.1  Physical Processes Proceeding Upon Deep Melting
        of Fixed Samples ..................................... 213
        4.1.1  The Thermal Deep-Melting Model ................ 213
        4.1.2  Mechanical Limit of Laser Beam Penetration
               into Liquid ................................... 215
        4.1.3  Peculiarities of Deep Laser Beam Penetration
               into Liquid ................................... 221
   4.2  Thermal Deep Penetration Melting Model for a Moving
        Sample ............................................... 224
        4.2.1  Physical Processes in Welding of Materials .... 224
        4.2.2  Deep Melting of Various Materials ............. 229
        4.2.3  Thermal Efficiency of Laser Welding ........... 231
   4.3  Hydrodynamical Processes During Deep Laser-Beam
        Penetration into Solids .............................. 237
        4.3.1  Experimental Study of Material Melt Flows ..... 237
        4.3.2  Models of the Hydrodynamic Flow Upon Deep
               Melting ....................................... 243
        4.3.3  Influence of Laser Radiation Polarization
               and Shield Gas on Laser Welding Properties .... 245
        4.3.4  Role of Shield Gases in Deep Melting of
               Metals ........................................ 248
   4.4  Models of a Gas-Vapor Keyhole of Finite Size ......... 252
        4.4.1  Thermal Deep-Melting Model with a Gas-Vapor
               Keyhole of Finite Diameter .................... 252
        4.4.2  Self-Consistent Stationary Laser Welding
               Model ......................................... 254
        4.4.3  Stability of a Cylindrical Gas-Vapor
               Keyhole ....................................... 261
        4.4.4  Instability of the Leading Edge of
               a Keyhole ..................................... 267
        4.4.5  Melt Pool Instability ......................... 269
   4.5  Remote and Hybrid Welding of Metals .................. 270
        4.5.1  Features of Laser-Arc Welding of Metals ....... 270
        4.5.2  Remote Welding of Metals ...................... 274
        4.5.3  Influence of Laser Radiation Quality on
               Laser Welding ................................. 276
   References ................................................ 283
5  Physics of Remote and Gas-Assisted Cutting with Lasers .... 287
   5.1  Mechanism of Remote Cutting with cw Lasers ........... 288
        5.1.1  Physics of Melt Removal in Drilling of
               Vertical Plates ............................... 288
        5.1.2  Drilling of Horizontal Plates ................. 292
        5.1.3  Self-Consistent Drilling Model ................ 293
        5.1.4  Thermally Thick Limit ......................... 294
        5.1.5  Remote Cutting ................................ 296
        5.1.6  Experimental Techniques and Results ........... 298
        5.1.7  Oscillatory Type of Remote Cutting ............ 300
        5.1.8  Comparison of Calculated and Experimental
               Results ....................................... 301
        5.1.9  Disruption of Cutting Operation ............... 303
   5.2  Properties of Gas-Assisted Cutting ................... 304
        5.2.1  Gas Dynamics in Laser Cutting ................. 305
        5.2.2  Numerical Studies of Gas Dynamics ............. 309
        5.2.3  Mechanisms of Melt Removal .................... 313
        5.2.4  Instabilities and Nonstationary Mechanisms
               of Melt Removal ............................... 317
        5.2.5  Modelling of Melting Front and Melt Removal
               in Gas-Assisted Cutting of Metals ............. 320
        5.2.6  Properties and Efficiency of Gas-Assisted
               Cutting ....................................... 325
        5.2.7  Beam Polarization ............................. 329
        5.2.8  Multiple Reflections .......................... 335
   5.3  Physical Processes in Laser Cutting with an Oxygen
        Jet .................................................. 336
        5.3.1  Model of Stationary Cutting of Steel in an
               Oxygen Jet .................................... 339
        5.3.2  Instability of Laser Cutting in the Oxygen
               Atmosphere .................................... 340
        5.3.3  Experimental Studies of High-Quality Laser
6  Cutting of Thick Mild Steels with Oxygen Assist Gas ....... 342
   References ................................................ 343
   Interaction of Pulsed Laser Radiation with Materials ...... 345
   6.1  Physics of Pulsed Laser Ablation and Deposition of
        Films ................................................ 346
        6.1.1  Initial Stage ................................. 348
        6.1.2  Ablation to Vacuum ............................ 352
        6.1.3  Ablation to Buffer Gas ........................ 353
        6.1.4  Comparison with Experiments ................... 355
        6.1.5  Ablation Efficiency ........................... 361
        6.1.6  Ablation of Materials Irradiated by
               Ultrashort Laser Pulses ....................... 363
   6.2  Modelling of Synthesis of Nanoparticles Upon
        Pulse Laser Vaporization ............................. 365
        6.2.1  Diffusion Model ............................... 367
        6.2.2  Results and Discussion ........................ 370
        6.2.3  Erosion Jet ................................... 373
   References ................................................ 377
7  Pulsed Surface Plasma ..................................... 379
   7.1  Pulsed Optical Breakdown Near a Surface .............. 379
        7.1.1  Nonstationary Thermal Breakdown ............... 380
        7.1.2  Quasi-Stationary Breakdown .................... 381
        7.1.3  Optical Breakdown in a Target Vapor Jet ....... 382
        7.1.4  Two-Dimensional and Nonequilibrium Effects
               in the Pulsed Breakdown ....................... 385
   7.2  Nonequilibrium Mechanisms of the Pulsed Breakdown .... 388
   7.3  Dynamics of a Plasma Plume and its Interaction
        with a Laser Beam .................................... 395
        7.3.1  Propagation Mechanisms of the Surface
               Plasma ........................................ 396
        7.3.2  Propagation of a Laser-Supported Detonation
               Wave in the Surrounding Gas ................... 399
        7.3.3  Reflecting Properties of a Plasma Plume ....... 406
        7.3.4  Numerical Modelling of a Pulsed Optical
               Discharge ..................................... 407
        7.3.5  Modeling Results .............................. 408
        7.3.6  Expansion Mechanisms of Plasmas ............... 409
        7.3.7  Plasma Transparency and Transmission
               Coefficient ................................... 413
        7.3.8  Comparison with Experiments ................... 415
   7.4  Plasma Processes in Material Vapors .................. 418
        7.4.1  Plasma Processes on a Target Surface .......... 420
        7.4.2  Plasma Processes During Vaporization of
               Metals in Air ................................. 424
        7.4.3  Plasma Phenomena During the Deep Penetration
               of a Laser Beam into a Sample and Breakdown
               on Microdroplets .............................. 427
   References ................................................ 432
8  Physics of the Damage and Deep Melting of Metals by
   Laser Pulses .............................................. 435
   8.1  Qualitative Hydrodynamical Model of Laser-Induced
        Melt Removal ......................................... 435
        8.1.1  Removal on a Melt from a Shallow Pool ......... 436
        8.1.2  Fountain Wave Regime .......................... 437
        8.1.3  Liquid Splash Regime .......................... 439
        8.1.4  Specific Damage Energy ........................ 441
        8.1.5  Numerical Modelling of Metal Removal from
               a Shallow Melt Pool ........................... 443
   8.2  Experimental Studies of the Interaction of
        Millisecond Laser Pulses with Materials .............. 447
        8.2.1  Experimental Study of Shallow Damage of
               Materials ..................................... 447
        8.2.2  Deep-Penetration Keyhole Damage by a Single
               Pulse from a Neodymium Laser .................. 450
   8.3  Damage of Materials by Microsecond and Ultrashort
        Laser Pulses ......................................... 451
        8.3.1  Experimental Studies of the Damage of Metals
               by Pulsed СОг Laser Radiation ................. 451
        8.3.2  Material Processing by Ultrashort Pulses ...... 454
        8.3.3  Theoretical Models of Formation of Deep
               Keyholes in Metals by C02 Laser Radiation ..... 458
        8.3.4  Waveguide Regime .............................. 460
   8.4  Physics of Deep Melting of Metals by Pulsed
        Radiation ............................................ 463
        8.4.1  Pulsed Welding ................................ 463
        8.4.2  Control of the Deep Penetration Melting
               Process ....................................... 466
   References ................................................ 468
9  Interaction of Repetitively Pulsed Laser Radiation
   with Materials ............................................ 471
   9.1  Modeling of Thermal Processes During Repetitively
        Pulsed Irradiation of a Sample Surface ............... 472
        9.1.1  Features of Thermal Processes and Phase
               Transitions During Repetitively Pulsed Laser
               Irradiation ................................... 473
        9.1.2  Thermal Model of Metal-Surface Hardening
               by Repetitively Pulsed Laser Radiation ........ 477
   9.2  Thermal Model of Deep Melting of Metals by
        Repetitively Pulsed Laser Radiation with Low Off-
        Duty Ratio ........................................... 480
        9.2.1  Thermal Model of Deep Melting of Moving
               Samples by Repetitively Pulsed Radiation ...... 480
        9.2.2  Thermal Model of Metal Welding with a Pulsed
               Laser with Low Off-Duty Ratio ................. 482
   9.3  Physical Processes During Welding of Metals by
        Repetitively Pulsed Laser Radiation with High
        Off-Duty Ratio ....................................... 487
        9.3.1  Theoretical Model ............................. 487
        9.3.2  Experimental Studies .......................... 493
        9.3.3  Dynamics of a Weld Pool Upon Repetitively
               Pulsed Irradiation ............................ 495
   9.4  Drilling and Cutting of Metals by Repetitively
        Pulsed Radiation ..................................... 501
        9.4.1  Properties and Mechanism of Metal Cutting
               by Repetitively Pulsed CO2 Laser Radiation .... 501
        9.4.2  Gas Assisted Laser Cutting of Metals by
               Repetitively Pulsed Radiation ................. 504
        9.4.3  Modelling of the Instability of Deep Laser-
               Beam Penetration into a Moving Target ......... 506
   9.5  Damage and Remote Cutting of Metals by
        a Repetitively Pulsed Laser .......................... 509
        9.5.1  Formulation of the Problem .................... 509
        9.5.2  Experimental Results .......................... 510
        9.5.3  Numerical Model ............................... 512
        9.5.4  Comparison of Numerical Calculations with
               Experiment .................................... 515
        9.5.5  Remote Damage of Metals by Radiation from
               High-Average-Power Lasers ..................... 518
        9.5.6  Remote Cutting Model for Thick Plates ......... 519
        9.5.7  Thin Plates ................................... 523
   References ................................................ 526

Index ........................................................ 529


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 23,979 bytes.
Посещение N 1804 c 06.11.2012