Sieniutycz S. Energy optimization in process systems (Oxford, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSieniutycz S. Energy optimization in process systems / S.Sieniutycz, J.Jeżowski. - Oxford; Amsterdam: Elsevier, 2009. - xvii, 751 p.: ill. - Bibliogr. at the end of the chapters. - Ind.: p.735-751. - ISBN 978-0-080-45141-1
 

Оглавление / Contents
 
Preface ........................................................ xi
Acknowledgements .............................................. xix

Chapter 1:  Brief review of static optimization methods ......... 1
1.1  Introduction: Significance of Mathematical Models .......... 1
1.2  Unconstrained Problems ..................................... 4
1.3  Equality Constraints and Lagrange Multipliers .............. 7
1.4  Methods of Mathematical Programming ....................... 11
1.5  Iterative Search Methods .................................. 13
1.6  On Some Stochastic Optimization Techniques ................ 17

Chapter 2:  Dynamic optimization problems ...................... 45
2.1  Discrete Representations and Dynamic Programming
     Algorithms ................................................ 45
2.2  Recurrence Equations ...................................... 47
2.3  Discrete Processes Linear with Respect to the Time 
     Interval .................................................. 51
2.4  Discrete Algorithm of the Pontryagin's Type for 
     Processes Linear in θN .................................... 55
2.5  Hamilton-Jacobi-Bellman Equations for Continuous
     Systems ................................................... 58
2.6  Continuous Maximum Principle .............................. 70
2.7  Calculus of Variations .................................... 73
2.8  Viscosity Solutions and Non-smooth Analyses ............... 76
2.9  Stochastic Control and Stochastic Maximum Principle ....... 84

Chapter 3:  Energy limits for thermal engines and heat-pumps
            at steady states ................................... 85
3.1  Introduction: Role of Optimization in Determining
     Thermodynamic Limits ...................................... 85
3.2  Classical Problem of Thermal Engine Driven by Heat Flux ... 90
3.3  Toward Work Limits in Sequential Systems ................. 109
3.4  Energy Utilization and Heat-pumps ........................ 112
3.5  Thermal Separation Processes ............................. 116
3.6  Steady Chemical, Electrochemical and Other Systems ....... 117
3.7  Limits in Living Systems ................................. 123
3.8  Final Remarks ............................................ 124

Chapter 4:  Hamiltonian optimization of imperfect 
            cascades .......................................... 127
4.1  Basic Properties of Irreversible Cascade Operations
     with a Work Flux ......................................... 127
4.2  Description of Imperfect Units in Terms of Carnot
     Temperature Control ...................................... 132
4.3  Single-stage Formulae in a Model of Cascade Operation .... 138
4.4  Work Optimization in Cascade by Discrete Maximum 
     Principle ................................................ 141
4.5  Example .................................................. 155
4.6  Continuous Imperfect System with Two Finite Reservoirs ... 157
4.7  Final Remarks ............................................ 164

Chapter 5:  Maximum power from solar energy ................... 167
5.1  Introducing Carnot Controls for Modeling Solar-assisted
     Operations ............................................... 167
5.2  Thermodynamics of Radiation .............................. 175
5.3  Classical Exergy of Radiation ............................ 180
5.4  Flux of Classical Exergy ................................. 184
5.5  Efficiencies of Energy Conversion ........................ 186
5.6  Towards a Dissipative Exergy of Radiation at Flow ........ 187
5.7  Basic Analytical Formulae of Steady Pseudo-Newtonian
     Model .................................................... 190
5.8  Steady Non-Linear Models applying Stefan-Boltzmann
     Equation ................................................. 192
5.9  Dynamical Theory for Pseudo-Newtonian Models ............. 195
5.10 Dynamical Models using the Stefan-Boltzmann Equation ..... 204
5.11 Towards the Hamilton-Jacobi-Bellman Approaches ........... 211
5.12 Final Remarks ............................................ 212

Chapter 6: Hamilton-Jacobi-Bellman theory of energy systems ... 215
6.1  Introduction ............................................. 215
6.2  Dynamic Optimization of Power in a Finite-resource
     Process .................................................. 216
6.3  Two Different Works and Finite-Rate Exergies ............. 219
6.4  Some Aspects of Classical Analytical HJB Theory for
     Continuous Systems ....................................... 223
6.5  HJB Equations for Non-Linear Power Generation Systems .... 225
6.6  Analytical Solutions in Systems with Linear Kinetics ..... 227
6.7  Extensions for Systems with Non-Linear Kinetics and
     Internal Dissipation ..................................... 230
6.8  Generalized Exergies for Non-Linear Systems with
     Minimum Dissipation ...................................... 232
6.9  Final Remarks ............................................ 235

Chapter 7:  Numerical optimization in allocation, storage 
            and recovery of thermal energy and resources ...... 237
7.1  Introduction ............................................. 237
7.2  A Discrete Model for a Non-Linear Problem of Maximum
     Power from Radiation ..................................... 239
7.3  Non-Constant Hamiltonians and Convergence of Discrete
     DP Algorithms to Viscosity Solutions of HJB Equations .... 240
7.4  Dynamic Programming Equation for Maximum Power From
     Radiation ................................................ 249
7.5  Discrete Approximations and Time Adjoint as a Lagrange
     Multiplier ............................................... 250
7.6  Mean and Local Intensities in Discrete Processes ......... 257
7.7  Legendre Transform and Original Work Function ............ 259
7.8  Numerical Approaches Applying Dynamic Programming ........ 261
7.9  Dimensionality Reduction in Dynamic Programming
     Algorithms ............................................... 265
7.10 Concluding Remarks ....................................... 267

Chapter 8:  Optimal control of separation processes ........... 271
8.1  General Thermokinetic Issues ............................. 271
8.2  Thermodynamic Balances toward Minimum Heat or Work ....... 273
8.3  Results for Irreversible Separations Driven by Work or
     Heat ..................................................... 279
8.4  Thermoeconomic Optimization of Thermal Drying with
     Fluidizing Solids ........................................ 282
8.5  Solar Energy Application to Work-Assisted Drying ......... 312
8.6  Concluding Remarks ....................................... 320

Chapter 9:  Optimal decisions for chemical and
            electrochemical reactors .......................... 321
9.1  Introduction ............................................. 321
9.2  Driving Forces in Transport Processes and Chemical
     Reactions ................................................ 321
9.3  General Non-Linear Equations of Macrokinetics ............ 324
9.4  Classical Chemical and Electrochemical Kinetics .......... 325
9.5  Inclusion of Non-Linear Transport Phenomena .............. 327
9.6  Continuous Description of Chemical (Electrochemical)
     Kinetics and Transport Phenomena ......................... 329
9.7  Towards Power Production in Chemical Systems ............. 331
9.8  Thermodynamics of Power Generation in Non-Isothermal
     Chemical Engines ......................................... 334
9.9  Non-Isothermal Engines in Terms of Carnot Variables ...... 338
9.10 Entropy Production in Steady Systems ..................... 340
9.11 Dissipative Availabilities in Dynamical Systems .......... 341
9.12 Characteristics of Steady Isothermal Engines ............. 343
9.13 Sequential Models for Dynamic Power Generators ........... 351
9.14 A Computational Algorithm for Dynamical Process with
     Power Maximization ....................................... 355
9.15 Results of Computations .................................. 358
9.16 Some Additional Comments ................................. 359
9.17 Comparison of Chemical and Thermal Operations of Power
     Production ............................................... 360
9.18 Fuel Cell Application .................................... 361
9.19 Final Remarks ............................................ 365

Chapter 10: Energy limits and evolution in biological 
            systems ........................................... 367
10.1  Introduction ............................................ 367
10.2  Energy and Size Limits .................................. 368
10.3  Toward a Quantitative Description of Development
      and Evolution of Species ................................ 375
10.4  Significance of Complexity and Entropy .................. 378
10.5  Evolutions of Multiple Organs without Mutations ......... 381
10.6  Organisms with Mutations or Specializations of Organs ... 383
10.7  A Variational Approach to the Dynamics of Evolution ..... 384
10.8  Concluding Remarks ...................................... 388

Chapter 11: Systems theory in thermal & chemical 
            engineering ....................................... 391
11.1 Introduction ............................................. 391
11.2 System Energy Analyses ................................... 392
11.3 Mathematical Modeling of Industrial Energy Management .... 392
11.4 Linear Model of the Energy Balance for an Industrial 
     Plant and its Applications ............................... 395
11.5 Non-Linear Mathematical Model of a Short-Term Balance
     of Industrial Energy System .............................. 399
11.6 Mathematical Optimization Model for the Preliminary
     Design of Industrial Energy Systems ...................... 401
11.7 Remarks on Diverse Methodologies and Link with
     Ecological Criteria ...................................... 406
11.8 Control Thermodynamics for Explicitly Dynamical 
     Systems .................................................. 412
11.9 Interface of Energy Limits, Structure Design,
     Thermoeconomics and Ecology .............................. 414
11.10 Towards the Thermoeconomics and Integration of
     Heat Energy .............................................. 425

Chapter 12: Heat integration within process integration ....... 427

Chapter 13: Maximum heat recovery and its consequences for
            process system design ............................. 437
13.1 Introduction and Problem Formulation ..................... 437
13.2 Composite Curve (CC) Plot ................................ 439
13.3 Problem Table (PR-T) Method .............................. 446
13.4 Grand Composite Curve (GCC) Plot ......................... 450
13.5 Special Topics in MER/MUC Calculations ................... 454
13.6 Summary and Further Reading .............................. 458

Chapter 14: Targeting and supertargeting in heat exchanger
            network design .................................... 461
14.1 Targeting Stage in Overall Design Process ................ 461
14.2 Basis of Sequential Approaches for HEN Targeting.......... 462
14.3 Basis of Simultaneous Approaches for HEN Targeting ....... 467

Chapter 15: Minimum utility cost (MUC) target by
            optimization approaches ........................... 469
15.1 Introduction and MER Problem Solution by Mathematical
     Programming .............................................. 469
15.2 MUC Problem Solution Methods ............................. 472
15.3 Dual Matches ............................................. 485
15.4 Minimum Utility Cost under Disturbances .................. 488

Chapter 16: Minimum number of units (MNU) and minimum
            total surface area (MTA) targets .................. 495
16.1 Introduction ............................................. 495
16.2 Minimum Number of Matches (MNM) Target ................... 496
16.3 Minimum Total Area for Matches (MTA-M) Target ............ 515
16.4 Minimum Number of Shells (MNS) Target .................... 521
16.5 Minimum Total Area for Shells (MTA-S) Target ............. 525

Chapter 17: Simultaneous HEN targeting for total annual
            cost .............................................. 533

Chapter 18: Heat exchanger network synthesis .................. 547
18.1 Introduction ............................................. 547
18.2 Sequential Approaches .................................... 548
18.3 Simultaneous Approaches to HEN Synthesis ................. 566

Chapter 19: Heat exchanger network retrofit ................... 583
19.1 Introduction ............................................. 583
19.2 Network Pinch Method ..................................... 586
19.3 Simultaneous Approaches for HEN Retrofit ................. 596

Chapter 20: Approaches to water network design ................ 613
20.1 Introduction ............................................. 613
20.2 Mathematical Models and Data for Water Network 
     Problem .................................................. 617
20.3 Overview of Approaches in the Literature ................. 621

     References ............................................... 659
     Glossary of symbols ...................................... 725
     Index .................................................... 735


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:14 2019. Размер: 17,266 bytes.
Посещение N 1203 c 06.11.2012