Belfiore L.A. Physical properties of macromolecules (Hoboken, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBelfiore L.A. Physical properties of macromolecules. - Hoboken: Wiley, 2010. - xx, 801 p.: ill. - Bibliogr. at the end of the chapters. - Ind.: p.765-798. - ISBN 978-0-470-22893-7
 

Место хранения: 040 | Институт биофизики СО РАН | Красноярск | Библиотека

Оглавление / Contents
 
Preface ....................................................... xix

Part One Glass transitions in Amorphous Polymers

1  Glass Transitions in Amorphous Polymers: Basic Concepts ...... 3
   1.1  Phase Transitions in Amorphous Materials ................ 3
   1.2  Volume-Temperature and Enthalpy-Temperature Relations
        in the Vicinity of First-Order and Second-Order Phase
        Transitions: Discontinuous Thermophysical Properties
        at Tm and Tg ............................................ 4
   1.3  The Equilibrium Glassy State ............................ 8
   1.4  Physical Aging, Densification, and Volume and Enthalpy
        Relaxation .............................................. 8
   1.5  Temperature-Pressure Differential Phase Equilibrium
        Relations for First-Order Processes: The Clapeyron
        Equation ............................................... 10
   1.6  Temperature-Pressure Differential Phase EquiUbrium
        Relations for Second-Order Processes: The Ehrenfest
        Equations .............................................. 11
   1.7  Compositional Dependence of Tg via Entropy
        Continuity ............................................. 15
   1.8  Compositional Dependence of Tg via Volume Continuity ... 18
   1.9  Linear Least Squares Analysis of the Gordon-Taylor
        Equation and Other Tg-Composition Relations for
        Binary Mixtures ........................................ 20
   1.10 Free Volume Concepts ................................... 21
   1.11 Temperature Dependence of Fractional Free Volume ....... 22
   1.12 Compositional Dependence of Fractional Free Volume
        and Plasticizer Efficiency for Binary Mixtures ......... 23
   1.13 Fractional Free Volume Analysis of Multicomponent
        Mixtures: Compositional Dependence of the Glass
        Transition Temperature ................................. 25
   1.14 Molecular Weight Dependence of Fractional Free
        Volume ................................................. 26
   1.15 Experimental Design to Test the Molecular Weight
        Dependence of Fractional Free Volume and Tg ............ 27
   1.16 Pressure Dependence of Fractional Free Volume .......... 29
   1.17 Effect of Particle Size or Film Thickness on the
        Glass Transition Temperature ........................... 31
   1.18 Effect of the Glass Transition on Surface Tension ...... 34
   References .................................................. 35
   Problems .................................................... 36
2  Diffusion in Amorphous Polymers Near the Glass Transition
   Temperature ................................................. 49
   2.1  Diffusion on a Lattice ................................. 49
   2.2  Overview of the Relation Between Fractional Free
        Volume and Diffusive Motion of Liquids and Gases
        Through Polymeric Membranes ............................ 50
   2.3  Free Volume Theory of Cohen and Turnbull for
        Diffusion in Liquids and Glasses ....................... 51
   2.4  Free Volume Theory of Vrentas and Duda for Solvent
        Diffusion in Polymers Above the Glass Transition
        Temperature ............................................ 55
   2.5  Influence of the Glass Transition on Diffusion in
        Amorphous Polymers ..................................... 58
   2.6  Analysis of Half-Times and Lag Times via the Unsteady
        State Diffusion Equation ............................... 61
   2.7  Example Problem: Effect of Molecular Weight
        Distribution Functions on Average Diffusivities ........ 66
   References .................................................. 69
3  Lattice Theories for Polymer-Small-Molecule Mixtures and
   the Conformational Entropy Description of the Glass
   Transition Temperature ...................................... 71
   3.1  Lattice Models in Thermodynamics ....................... 72
   3.2  Membrane Osmometry and the Osmotic Pressure
        Expansion .............................................. 72
   3.3  Lattice Models for Athermal Mixtures with Excluded
        Volume ................................................. 76
   3.4  Flory-Huggins Lattice Theory for Flexible Polymer
        Solutions .............................................. 79
   3.5  Chemical Stability of Binary Mixtures .................. 89
   3.6  Guggenheim's Lattice Theory of Athermal Mixtures ...... 105
   3.7  Gibbs-DiMarzio Conformational Entropy Description of
        the Glass Transition for Tetrahedral Lattices ......... 117
   3.8  Lattice Cluster Theory Analysis of Conformational
        Entropy and the Glass Transition in Amorphous
        Polymers .............................................. 123
   3.9  Sanchez-Lacombe Statistical Thermodynamic Lattice
        Fluid Theory of Polymer- Solvent Mixtures ............. 126
   Appendix: The Connection Between Exothermic Energetics
             and Volume Contraction of the Mixture ............ 128
   References ................................................. 131
   Problems ................................................... 132
4  de Electric Field Effects on First- and Second-Order
   Phase Transitions in Pure Materials and Binary Mixtures .... 137
   4.1  Electric-Field-Induced Alignment and Phase
        Separation ............................................ 137
   4.2  Overview .............................................. 138
   4.3  Electric Field Effects on Low-Molecular-Weight
        Molecules and Their Mixtures .......................... 138
   4.4  Electric Field Effects on Polymers and Their
        Mixtures .............................................. 139
   4.5  Motivation for Analysis of Electric Field Effects on
        Phase Transitions ..................................... 141
   4.6  Theoretical Considerations ............................ 141
   4.7  Summary ............................................... 166
   Appendix: Nomenclature ..................................... 167
   References ................................................. 168
5  Order Parameters for Glasses: Pressure and Compositional
   Dependence of the Glass Transition Temperature ............. 171
   5.1  Thermodynamic Order Parameters ........................ 171
   5.2  Ehrenfest Inequalities: Two Independent Internal
        Order Parameters Identify an Inequality Between the
        Two Predictions for the Pressure Dependence of the
        Glass Transition Temperature .......................... 172
   5.3  Compositional Dependence of the Glass Transition
        Temperature ........................................... 177
   5.4  Diluent Concentration Dependence of the Glass
        Transition Temperature via Classical Thermodynamics ... 181
   5.5  Compositional Dependence of the Glass Transition
        Temperature via Lattice Theory Models ................. 183
   5.6  Comparison with Other Theories ........................ 184
   5.7  Model Calculations .................................... 186
   5.8  Limitations of the Theory ............................. 188
   References ................................................. 188
   Problem .................................................... 189
6  Macromolecule-Metal Complexes: Ligand Field Stabilization
   and Glass Transition Temperature Enhancement ............... 191
   6.1  Ligand Field Stabilization ............................ 191
   6.2  Overview .............................................. 192
   6.3  Methodology of Transition-Metal Coordination in
        Polymeric Complexes ................................... 193
   6.4  Pseudo-Octahedral d8 Nickel Complexes with Poly(4-
        vinylpyridine) ........................................ 209
   6.5  d6 Molybdenum Carbonyl Complexes with
        Poly(vinylamine) that Exhibit Reduced Symmetry Above
        the Glass Transition Temperature ...................... 216
   6.6  Cobalt, Nickel, and Ruthenium Complexes with Poly(4-
        vinylpyridine) and Poly(L-histidine) that Exhibit
        Reduced Symmetry in the Molten State .................. 224
   6.7  Total Energetic Requirements to Induce the Glass
        Transition via Consideration of the First-Shell
        Coordination Sphere in Transition Metal and
        Lanthanide Complexes .................................. 238
   6.8  Summary ............................................... 241
   6.9  Epilogue .............................................. 241
   Appendix: Physical Interpretation of the Parameters in
             the Kwei Equation for Synergistic Enhancement
             of the Glass Transition Temperature in Binary
             Mixtures ......................................... 243
   References ................................................. 243

Part Two Semicrystalline Polymers and Melting Transitions

7  Basic Concepts and Molecular Optical Anisotropy in
   Semicrystalline Polymers ................................... 249
   7.1  Spherulitic Superstructure ............................ 249
   7.2  Comments about Crystallization ........................ 250
   7.3  Spherulitic Superstructures that Exhibit Molecular
        Optical Anisotropy .................................... 255
   7.4  Interaction of a Birefringent Spherulite with
        Polarized Light ....................................... 258
   7.5  Interaction of Disordered Lamellae with Polarized
        Light ................................................. 260
   7.6  Interaction of Disordered Lamellae with Unpolarized
        Light ................................................. 261
   7.7  Molecular Optical Anisotropy of Random Coils and
        Rigid Rod-Like Polymers ............................... 263
   7.8  Birefringence of Rubbery Polymers Subjected to
        External Force Fields ................................. 278
   7.9  Chain Folding, Interspherulitic Connectivity, and
        Mechanical Properties of Semicrystalline Polymers ..... 279
   References ................................................. 282
   Problems ................................................... 283
8  Crystallization Kinetics via Spherulitic Growth ............ 287
   8.1  Nucleation and Growth ................................. 287
   8.2  Heterogeneous Nucleation and Growth Prior to
        Impingement ........................................... 288
   8.3  Avrami Equation for Heterogeneous Nucleation that
        Accounts for Impingement of Spherulites ............... 289
   8.4  Crystallization Kinetics and the Avrami Equation
        for Homogeneous Nucleation of Spherulites ............. 292
   8.5  Linear Least Squares Analysis of the Kinetics of
        Crystallization via the Generalized Avrami
        Equation .............................................. 293
   8.6  Half-Time Analysis of Crystallization Isotherms ....... 296
   8.7  Maximum Rate of Isothermal Crystallization ............ 297
   8.8  Thermodynamics and Kinetics of Homogeneous
        Nucleation ............................................ 299
   8.9  Temperature Dependence of the Crystallization Rate
        Constant .............................................. 302
   8.10 Optimum Crystallization Temperatures: Comparison
        Between Theory and Experiment ......................... 304
   8.11 The Energetics of Chain Folding in Semicrystalline
        Polymer-Polymer Blends that Exhibit Multiple Melting
        Endotherms ............................................ 307
   8.12 Melting Point Depression in Polymer-Polymer and
        Polymer-Diluent Blends that Contain a High-
        Molecular-Weight Semicrystalline Component ............ 317
   References ................................................. 322
   Problems ................................................... 322
9  Experimental Analysis of Semicrystalline Polymers .......... 329
   9.1  Semicrystal Unity ..................................... 329
   9.2  Differential Scanning Calorimetry: Thermograms of
        Small Molecules that Exhibit Liquid Crystalline
        Phase Transitions Below the Melting Point ............. 330
   9.3  Isothermal Analysis of Crystallization Exotherms
        via Differential Scanning Calorimetry ................. 331
   9.4  Kinetic Analysis of the Mass Fraction of
        Crystallinity via the Generalized Avrami Equation ..... 335
   9.5  Measurements of Crystal Unity via Differential
        Scanning Calorimetry .................................. 337
   9.6  Analysis of Crystallinity via Density Measurements .... 339
   9.7  Pychnometry: Density and Thermal Expansion
        Coefficient Measurements of Liquids and Solids ........ 340
   References ................................................. 344
   Problems ................................................... 344

Part Three Mechanical Properties of Linear Crosslinked 
Polymers

10 Mechanical Properties of Viscoelastic Materials: Basic
   Concepts in Linear Viscoelasticity ......................... 355
   10.1 Mathematical Models of Linear Viscoelasticity ......... 355
   10.2 Objectives ............................................ 356
   10.3 Simple Definitions of Stress, Strain, and Poisson's
        Ratio ................................................. 356
   10.4 Stress Tensor ......................................... 357
   10.5 Strain and Rate-of-Strain Tensors ..................... 358
   10.6 Hooke's Law of Elasticity ............................. 359
   10.7 Newton's Law of Viscosity ............................. 360
   10.8 Simple Analogies Between Mechanical and Electrical
        Response .............................................. 360
   10.9 Phase Angle Difference Between Stress and Strain
        and Voltage and Current in Dynamic Mechanical and
        Dielectric Experiments ................................ 361
   10.10 Maxwell's Viscoelastic Constitutive Equation ......... 362
   10.11 Integral Forms of Maxwell's Viscoelastic
         Constitutive Equation ................................ 364
   10.12 Mechanical Model of Maxwell's Viscoelastic
         Constitutive Equation ................................ 366
   10.13 Four Well-Defined Mechanical Experiments ............. 367
   10.14 Linear Response of the Maxwell Model during Creep
         Experiments .......................................... 368
   10.15 Creep Recovery of the Maxwell Model .................. 369
   10.16 Linear Response of the Maxwell Model during Stress
         Relaxation ........................................... 370
   10.17 Temperature Dependence of the Stress Relaxation
         Modulus and Definition of the Deborah Number ......... 372
   10.18 Other Combinations of Springs and Dashpots ........... 373
   10.19 Equation of Motion for the Voigt Model ............... 374
   10.20 Linear Response of the Voigt Model in Creep
         Experiments .......................................... 376
   10.21 Creep Recovery of the Voigt Model .................... 376
   10.22 Creep and Stress Relaxation for a Series
         Combination of Maxwell and Voigt Elements ............ 377
   10.23 The Principle of Time-Temperature Superposition ...... 385
   10.24 Stress Relaxation via the Equivalence Between Time
         and Temperature ...................................... 385
   10.25 Semi Theoretical Justification for the Empirical
         Form of the WLF Shift Factor αT(T; Treference) ........ 389
   10.26 Temperature Dependence of the Zero-Shear-Rate
         Polymer Viscosity via Fractional Free Volume and
         the Doolittle Equation ............................... 390
   10.27 Apparent Activation Energy for αT and the Zero-
         Shear-Rate Polymer Viscosity ......................... 392
   10.28 Comparison of the WLF Shift Factor αT at Different
         Reference Temperatures ............................... 393
   10.29 Vogel's Equation for the Time-Temperature Shift
         Factor ............................................... 394
   10.30 Effect of Diluent Concentration on the WLF Shift
         Factor ac in Concentrated Polymer Solutions .......... 394
   10.31 Stress Relaxation Moduli via the Distribution of
         Viscoelastic Time Constants  ......................... 397
   10.32 Stress Relaxation Moduli and Terminal Relaxation
         Times ................................................ 400
   10.33 The Critical Molecular Weight Required for
         Entanglement Formation ............................... 403
   10.34 Zero-Shear-Rate Viscosity via the Distribution of
         Viscoelastic Relaxation Times ........................ 403
   10.35 The Boltzmann Superposition Integral for Linear
         Viscoelastic Response ................................ 405
   10.36 Alternate Forms of the Boltzmann Superposition
         Integral for σ(t) .................................... 406
   10.37 Linear Viscoelastic Application of the Boltzmann
         Superposition Principle: Elastic Free Recovery ....... 407
   10.38 Dynamic Mechanical Testing of Viscoelastic Solids
         via Forced Vibration Analysis of Time-Dependent
         Stress and Dynamic Modulus E*(t; ω) .................. 410
   10.39 Phasor Analysis of Dynamic Viscoelastic
         Experiments via Complex Variables .................... 413
   10.40 Fourier Transformation of the Stress Relaxation
         Modulus Yields Dynamic Moduli via Complex Variable
         Analysis ............................................. 415
   10.41 Energy Dissipation and Storage During Forced
         Vibration Dynamic Mechanical Experiments ............. 417
   10.42 Free Vibration Dynamic Measurements via the
         Torsion Pendulum ..................................... 419
   Appendix A: Linear Viscoelasticity ......................... 425
   Appendix B: Finite Strain Concepts for Elastic
               Materials ...................................... 435
   Appendix C: Distribution of Linear Viscoelastic
               Relaxation Times ............................... 443
   Further Reading ............................................ 453
   References ................................................. 453
   Problems ................................................... 454
11 Nonlinear Stress Relaxation in Macromolecule-Metal
   Complexes .................................................. 469
   11.1 Nonlinear Viscoelasticity ............................. 469
   11.2 Overview .............................................. 470
   11.3 Relevant Background Information about Palladium
        Complexes with Macromolecules that Contain Alkene
        Functional Groups ..................................... 471
   11.4 Effect of Palladium Chloride on the Stress-Strain
        Behavior of Triblock Copolymers Containing Styrene
        and Butadiene ......................................... 471
   11.5 Crosslinked Polymers and Limited Chain
        Extensibility ......................................... 472
   11.6 Nonlinear Stress Relaxation ........................... 472
   11.7 Results from Stress Relaxation Experiments on
        Triblock Copolymers ................................... 476
   11.8 Effect of Strain on Stress Relaxation ................. 478
   11.9 Time-Strain Separability of the Relaxation
        Function .............................................. 479
   11.10 Characteristic Length Scales for Cooperative
        Reorganization and the Effect of Strain on
        Viscoelastic Relaxation Times ......................... 480
   11.11 Summary .............................................. 482
   References ................................................. 483
12 Kinetic Analysis of Molecular Weight Distribution
   Functions in Linear Polymers ............................... 485
   12.1 All Chains Do Not Contain the Same Number of Repeat
        Units ................................................. 485
   12.2 The "Most Probable Distribution" for
        Polycondensation Reactions: Statistical
        Considerations ........................................ 486
   12.3 Discrete versus Continuous Distributions for
        Condensation Polymerization ........................... 490
   12.4 The Degree of Polymerization for Polycondensation
        Reactions ............................................. 491
   12.5 Moments-Generating Functions for Discrete
        Distributions via z-Transforms ........................ 496
   12.6 Kinetics, Molecular Weight Distributions, and
        Moments-Generating Functions for Free Radical
        Polymerizations ....................................... 498
   12.7 Anionic "Living" Polymerizations and the Poisson
        Distribution .......................................... 508
   12.8 Connection Between Laplace Transforms and the
        Moments-Generating Function for any Distribution in
        the Continuous Limit .................................. 515
   12.9 Expansion of Continuous Distribution Functions via
        Orthogonal Laguerre Polynomials ....................... 521
   Appendix A: Unsteady State Batch Reactor Analysis of the
               Most Probable Distribution Function ............ 524
   Appendix B: Mechanism and Kinetics of Alkene
               Hydrogenation Reactions Transition-Metal
               Catalysts ...................................... 527
   Appendix C: Alkene Dimerization and Transition-Metal
               Compatibilization of 1,2-Polybutadiene and
               cis-polybutadiene via Palladium(II) Catalysis:
               Organometallic Mechanism and Kinetics .......... 534
   References ................................................. 543
   Problems ................................................... 544
13 Gaussian Statistics of Linear Chain Molecules and
   Crosslinked Elastomers ..................................... 547
   13.1 Gaussian Chains and Entropy Elasticity ................ 547
   13.2 Summary of Three-Dimensional Gaussian Chain
        Statistics ............................................ 548
   13.3 Vector Analysis of the Mean-Square End-to-End Chain
        Distance .............................................. 550
   13.4 One-Dimensional Random Walk Statistics via
        Bernoulli Trials and the Binomial Distribution ........ 552
   13.5 Extrapolation of One-Dimensional Gaussian
        Statistics to Three Dimensions ........................ 555
   13.6 Properties of Three-Dimensional Gaussian
        Distributions and Their Moments-Generating
        Function .............................................. 557
   13.7 Mean-Square Radius of Gyration of Freely Jointed
        Chains ................................................ 561
   13.8 Mean-Square End-to-End Distance of Freely Rotating
        Chains ................................................ 565
   13.9 Characteristic Ratios and Statistical Segment
         Length ............................................... 568
   13.10 Excluded Volume and the Expansion Factor a for
         Real Chains in "Good" Solvents: Athermal Solutions ... 570
   13.11 deGennes Scaling Analysis of Flory's Law for Real
         Chains in "Good" Solvents ............................ 578
   13.12 Intrinsic Viscosity of Dilute Polymer Solutions
         and Universal Calibration Curves for Gel Permeation
         Chromatography ....................................... 579
   13.13 Scaling Laws for Intrinsic Viscosity and the Mark-
         Houwink Equation ..................................... 582
   13.14 Intrinsic Viscosities of Polystyrene and
         Polyethylene oxide) .................................. 583
   13.15 Effect of pH During Dilute-Aqueous-Solution
         Preparation of Solid Films on the Glass Transition ... 584
   13.16 deGennes Scaling Analysis of the Threshold Overlap
         Molar Density c* in Concentrated Polymer Solutions
         and the Concept of "Blobs" ........................... 586
   13.17 Entropically Elastic Retractive Forces via
         Statistical Thermodynamics of Gaussian Chains ........ 587
   Appendix: Capillary Viscometry ............................. 595
   References ................................................. 600
   Problems ................................................... 601
14 Classical and Statistical Thermodynamics of Rubber-Like
   Materials .................................................. 609
   14.1 Affine Deformation .................................... 609
   14.2 Overview .............................................. 610
   14.3 Analogies ............................................. 610
   14.4 Classical Thermodynamic Analysis of the Ideal
        Equation of State for Retractive Force from Chapter
        13 .................................................... 610
   14.5 Analogous Development for the Effect of Sample
        Length on Internal Energy: The Concept of Ideal
        Rubber-Like Solids .................................... 614
   14.6 Thermoelastic Inversion ............................... 616
   14.7 Temperature Dependence of Retractive Forces that
        Accounts for Thermal Expansion ........................ 617
   14.8 Derivation of Flory's Approximation for Isotropic
        Rubber-Like Materials that Exhibit No Volume Change
        upon Deformation ...................................... 619
   14.9 Statistical Thermodynamic Analysis of the Equation
        of State for Ideal Rubber-Like Materials .............. 623
   14.10 Effect of Biaxial Deformation at Constant Volume
         on Boltzmann's Entropy and Stress versus Strain ...... 630
   14.11 Effect of Isotropic Chain Expansion in "Good"
         Solvents on the Conformational Entropy of Linear
         Macromolecules due to Excluded Volume ................ 631
   14.12 Effect of Polymer-Solvent Energetics on Chain
         Expansion via the Flory-Huggins Lattice Model ........ 633
   14.13 Gibbs Free Energy Minimization Yields the
         Equilibrium Chain Expansion Factor ................... 639
   Appendix A: Chemical or Diffusional Stability of
               Polymer-Solvent Mixtures ....................... 640
   Appendix B: Generalized Linear Least Squares Analysis
               for Second-Order Polynomials with One
               Independent Variable ........................... 641
   Appendix C: Linear versus Nonlinear Least Squares
               Dilemma ........................................ 643
   References ................................................. 646
   Problems ................................................... 646
15 Molecular Dynamics via Magnetic Resonance, Viscoelastic,
   and Dielectric Relaxation Phenomena ........................ 651
   15.1 Fluctuation-Dissipation ............................... 651
   15.2 Overview .............................................. 652
   15.3 Brief Introduction to Quantum Statistical
        Mechanics ............................................. 652
   15.4 The Ergodic Problem of Statistical Thermodynamics ..... 655
   15.5 NMR Relaxation via Spin Temperature Equilibration
        with the Lattice ...................................... 656
   15.6 Analysis of Spin-Lattice Relaxation Rates via Time-
        Dependent Perturbation Theory and the Density
        Matrix ................................................ 661
   15.7 Classical Description of Stress Relaxation via
        Autocorrelation of the End-to-End Chain Vector and
        the Fluctuation-Dissipation Theorem ................... 673
   15.8 Comparisons Among NMR, Mechanical, and Dielectric
        Relaxation via Molecular Motion in Polymeric
        Materials: Activated Rate Processes ................... 684
   15.9 Activation Energies for the Aging Process in
        Bisphenol - A Polycarbonate ........................... 691
   15.10 Complex Impedance Analysis of Dielectric Relaxation
         Measurements via Electrical Analogs of the Maxwell
         and Voigt Models of Linear Viscoelastic Response ..... 693
   15.11 Thermally Stimulated Discharge Currents in
         Polarized Dielectric Materials ....................... 696
   15.12 Summary .............................................. 702
   References ................................................. 703
16 Magnetic Spin Diffusion at the Nanoscale in Multiphase
   Polymers and Molecular Complexes ........................... 705
   16.1 Magnetic Resonance .................................... 705
   16.2 Overview .............................................. 706
   16.3 The Spin-Diffusion Problem ............................ 706
   16.4 Interdomain Communication via Magnetic Spin
        Diffusion: Description of the Modified Goldman-Shen
        Experiment ............................................ 707
   16.5 Materials ............................................. 709
   16.6 Magnetic Spin-Diffusion Experiments on Random
        Copolymers that Contain Disorganized Lamellae ......... 709
   16.7 Magnetic Spin-Diffusion Experiments on Triblock
        Copolymers that Contain Spherically Dispersed Hard
        Segments .............................................. 711
   16.8 Phenomenological Transient Diffusion Models for
        Two-Phase Systems with Spherical Polystyrene
        Domains in a Polybutadiene Matrix ..................... 715
   16.9 Solid State NMR Analysis of Molecular Complexes ....... 728
   16.10 High-Resolution Solid State NMR Spectroscopy of
         PEO Molecular Complexes: Correlations with Phase
         Behavior ............................................. 730
   16.11 Carbon-13 Solid State NMR Spectroscopy: Laboratory
         Experiments and Data Analysis ........................ 738
   16.12 Summary .............................................. 762
   References ................................................. 763

Index ......................................................... 765
Postface ...................................................... 799


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:16 2019. Размер: 34,283 bytes.
Посещение N 1551 c 13.11.2012