Sha W.T. Novel porous media formulation for multiphase flow conservation equations (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSha W.T. Novel porous media formulation for multiphase flow conservation equations. - Cambridge; New York: Cambridge University Press, 2011. - xliii, 214 p.: ill. - Ref.: p.193-200. - Ind.: p.201-214. - ISBN 978-1-107-01295-0
 

Оглавление / Contents
 
Figures and Table .............................................. xv
Foreword
by Alan Schriesheim ........................................... xix
Foreword
by Wm. Howard Arnold .......................................... xxi
Foreword
by Charles Kelber ........................................... xxiii
Nomenclature ................................................ xxvii
Preface ...................................................... xxxv
Acknowledgments ............................................. xliii
1  Introduction ................................................. 1
   1.1  Background information about multiphase flow ............ 2
   1.2  Significance of phase configurations in multiphase
        flow .................................................... 6
   1.3  Need for universally accepted formulation for
        multiphase flow conservation equations .................. 8
2  Averaging relations ......................................... 12
   2.1  Preliminaries .......................................... 13
   2.2  Local volume average and intrinsic volume average ...... 14
   2.3  Local area average and intrinsic area average .......... 15
   2.4  Local volume averaging theorems and their length-
        scale restrictions ..................................... 17
   2.5  Conservative criterion of minimum size of
        characteristic length of local averaging volume ........ 21
3  Phasic conservation equations and interfacial balance
   equations ................................................... 23
   3.1  Phasic conservation equations .......................... 23
   3.2  Interfacial balance equations .......................... 25
4  Local volume-averaged conservation equations and
   interfacial balance equations ............................... 27
   4.1  Local volume-averaged mass conservation equation of
        a phase and its interfacial balance equation ........... 27
   4.2  Local volume-averaged linear momentum equation and
        its interfacial balance equation ....................... 29
   4.3  Local volume-averaged total energy equation and its
        interfacial balance equation ........................... 33
   4.4  Local volume-averaged internal energy equation and
        its interfacial balance equation ....................... 36
   4.5  Local volume-averaged enthalpy equation and its
        interfacial balance equation ........................... 38
   4.6  Summary of local volume-averaged conservation
        equations .............................................. 41
        4.6.1  Local volume-averaged mass conservation
               equation ........................................ 41
        4.6.2  Local volume-averaged linear momentum
               conservation equation ........................... 42
        4.6.3  Local volume-averaged energy conservation
               equations ....................................... 43
               4.6.3.1  In terms of total energy Ek,
                        Ek = uk + ½UkUk ...................... 43
               4.6.3.2  In terms of internal energy uk ......... 44
               4.6.3.3  In terms of enthalpy hk ................ 45
   4.7  Summary of local volume-averaged interfacial
        balance equations ...................................... 45
        4.7.1  Local volume-averaged interfacial mass balance
               equation ........................................ 45
        4.7.2  Local volume-averaged interfacial linear
               momentum balance equation ....................... 46
        4.7.3  Local volume-averaged interfacial energy
               balance equation ................................ 46
               4.7.3.1  Total energy balance (capillary
                        energy ignored) ........................ 47
               4.7.3.2  Internal energy balance (dissipation
                        and reversible work ignored) ........... 47
               4.7.3.3  Enthalpy balance (capillary energy
                        ignored) ............................... 47
5  Time averaging of local volume-averaged conservation
   equations or time-volume-averaged conservation equations
   and interfacial balance equations ........................... 48
   5.1  Basic postulates ....................................... 48
   5.2  Useful observation without assuming υ'k = 0 ............ 53
   5.3  Time-volume-averaged mass conservation equation ........ 54
   5.4  Time-volume-averaged interfacial mass balance
        equation ............................................... 59
   5.5  Time-volume-averaged linear momentum conservation
        equation ............................................... 60
   5.6  Time-volume-averaged interfacial linear momentum
        balance equation ....................................... 73
   5.7  Time-volume-averaged total energy conservation
        equation ............................................... 75
   5.8  Time-volume-averaged interfacial total energy balance
        equation (capillary energy ignored) .................... 88
   5.9  Time-volume-averaged internal energy conservation
        equation ............................................... 90
   5.10 Time-volume-averaged interfacial internal energy
        balance equation ...................................... 100
   5.11 Time-volume-averaged enthalpy conservation equation ... 101
   5.12 Time-volume-averaged interfacial enthalpy balance
        equation (capillary energy ignored) ................... 109
   5.13 Summary of time-volume-averaged conservation
        equations ............................................. 110
        5.13.1 Time-volume-averaged conservation of mass
               equation ....................................... 110
        5.13.2 Time-volume-averaged linear momentum
               conservation equation .......................... 111
        5.13.3 Time-volume-averaged total energy
               conservation equation .......................... 112
        5.13.4 Time-volume-averaged internal energy
               conservation equation .......................... 113
        5.13.5 Time-volume-averaged enthalpy conservation
               equation ....................................... 113
   5.14 Summary of time-volume-averaged interfacial balance
        equations ............................................. 114
        5.14.1 Time-volume-averaged interfacial mass balance
               equation ....................................... 114
        5.14.2 Time-volume-averaged interfacial linear
               momentum balance equation ...................... 115
        5.14.3 Time-volume-averaged interfacial total energy
               balance equation ............................... 115
        5.14.4 Time-volume-averaged interfacial internal
               energy balance equation ........................ 115
        5.14.5 Time-volume-averaged interfacial enthalpy
               balance equation ............................... 116
6  Time averaging in relation to local volume averaging and
   time-volume averaging versus volume-time averaging ......... 117
   6.1  Time averaging in relation to local volume
        averaging ............................................. 117
   6.2  Time-volume averaging versus volume-time averaging .... 121
7  Novel porous media formulation for single phase and
   single phase with multicomponent applications .............. 125
   7.1  COMMIX code capable of computing detailed microflow
        fields with fine computational mesh and high-order
        differencing scheme ................................... 128
        7.1.1  Case (1): Von Karmann vortex shedding
               analysis ....................................... 128
        7.1.2  Case (2): Shear-driven cavity flow analysis .... 134
        7.1.3  Some observations about higher-order
               differencing schemes ........................... 138
   7.2  COMMIX code capable of capturing essential
        both macroflow field and macrotemperature
        distribution with a coarse computational mesh ......... 140
        7.2.1  Case (6): Natural convection phenomena in a
               prototypical pressurized water reactor during
               a postulated degraded core accident ............ 140
               7.2.1.1  Heat transfer ......................... 144
               7.2.1.2  Natural convection patterns ........... 145
               7.2.1.3  Temperature distribution .............. 145
        7.2.2  Case (7): Analysis of large-scale tests for
               AP-600 passive containment cooling system ...... 149
               7.2.2.1  Circumferential temperature
                        distribution .......................... 152
               7.2.2.2  Condensation and evaporation rate ..... 154
               7.2.2.3  Air partial pressure and containment
                        pressure .............................. 155
               7.2.2.4  Condensation and evaporating film
                        thickness ............................. 156
               7.2.2.5  Temperature distributions at various
                        locations ............................. 156
   7.3  Conclusion ............................................ 158
8  Discussion and concluding remarks .......................... 160
   8.1  Time averaging of local volume-averaged phasic
        conservation equations ................................ 161
        8.1.1  Length-scale restriction for the local volume
               average ........................................ 162
        8.1.2  Time scale restriction in the time averaging ... 163
        8.1.3  Time-volume-averaged conservation equations
               are in differential-integral form .............. 165
        8.1.4  Unique features of time-volume-averaged
               conservation equations ......................... 166
   8.2  Novel porous media formulation ........................ 168
        8.2.1  Single-phase implementation .................... 169
        8.2.2  Multiphase flow ................................ 171
   8.3  Future research ....................................... 172
   8.4  Summary ............................................... 176

APPENDIX A  Staggered-grid computational system ............... 179
APPENDIX B  Physical interpretation of fig.1αk = -υ-1Ak nk dA
            with γυ = l ....................................... 184
APPENDIX C  Evaluation of tfig.3 for non-Newtonian fluids
            with γυ = 0 ....................................... 188
APPENDIX D  Evaluation of tfig.2 for isotropic conduction
            with variable conductivity and with γυ = 1 ........ 191

References .................................................... 193
Index ......................................................... 201


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:16 2019. Размер: 15,209 bytes.
Посещение N 1375 c 13.11.2012