Scanning electron microscopy and X-ray microanalysis (New York, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаScanning electron microscopy and X-ray microanalysis / J.I.Goldstein et al. - 3rd ed. - New York: Springer, 2003. - xix, 690 p., [4] p. of plates: ill. (some col.) + 1 CD-ROM. - Incl. bibl. ref. - Sub. ind.: p.675-690. - ISBN 978-0-306-47292-3
 

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  Imaging Capabilities .................................... 2
   1.2  Structure Analysis ..................................... 10
   1.3  Elemental Analysis ..................................... 10
   1.4  Summary and Outline of This Book ....................... 17
   Appendix A. Overview of Scanning Electron Microscopy ........ 18
   Appendix B. Overview of Electron Probe X-Ray
               Microanalysis ................................... 19
   References .................................................. 20
2  The SEM and Its Modes of Operation .......................... 21
   2.1  How the SEM Works ...................................... 21
        2.1.1  Functions of the SEM Subsystems ................. 21
               2.1.1.1  Electron Gun and Lenses Produce
                        a Small Electron Beam .................. 22
               2.1.1.2  Deflection System Controls
                        Magnification .......................... 22
               2.1.1.3  Electron Detector Collects the
                        Signal ................................. 24
               2.1.1.4  Camera or Computer Records the Image ... 25
               2.1.1.5  Operator Controls ...................... 25
        2.1.2  SEM Imaging Modes ............................... 25
               2.1.2.1  Resolution Mode ........................ 27
               2.1.2.2  High-Current Mode ...................... 27
               2.1.2.3  Depth-of-Focus Mode .................... 28
               2.1.2.4  Low-Voltage Mode ....................... 29
        2.1.3  Why Learn about Electron Optics? ................ 29
   2.2  Electron Guns .......................................... 29
        2.2.1  Tungsten Hairpin Electron Guns .................. 30
               2.2.1.1  Filament ............................... 30
               2.2.1.2  Grid Cap ............................... 31
               2.2.1.3  Anode .................................. 31
               2.2.1.4  Emission Current and Beam Current ...... 32
               2.2.1.5  Operator Control of the Electron Gun ... 32
               2.2.2.1  Electron Emission Current .............. 33
               2.2.2.2  Brightness ............................. 33
               2.2.2.3  Lifetime ............................... 34
               2.2.2.4  Source Size, Energy Spread, Beam
                        Stability .............................. 34
               2.2.2.5  Improved Electron Gun
                        Characteristics ........................ 34
        2.2.3  Lanthanum Hexaboride (LaB6) Electron Guns ....... 35
               2.2.3.1  Introduction ........................... 35
               2.2.3.2  Operation of the LaBg Source ........... 36
        2.2.4  Field Emission Electron Guns .................... 37
   2.3  Electron Lenses ........................................ 40
        2.3.1  Making the Beam Smaller ......................... 40
               2.3.1.1  Electron Focusing ...................... 40
               2.3.1.2  Demagnification of the Beam ............ 41
        2.3.2  Lenses in SEMs .................................. 43
               2.3.2.1  Condenser Lenses ....................... 42
               2.3.2.2  Objective Lenses ....................... 42
               2.3.2.3  Real and Virtual Objective Apertures ... 42
        2.3.3  Operator Control of SEM Lenses .................. 44
               2.3.3.1  Effect of Aperture Size ................ 44
               2.3.3.2  Effect of Working Distance ............. 45
               2.3.3.3  Effect of Condenser Lens Strength ...... 46
        2.3.4  Gaussian Probe Diameter ......................... 47
        2.3.5  Lens Aberrations ................................ 48
               2.3.5.1  Spherical Aberration ................... 48
               2.3.5.2  Aperture Diffraction ................... 49
               2.3.5.3  Chromatic Aberration ................... 50
               2.3.5.4  Astigmatism ............................ 51
               2.3.5.5  Aberrations in the Objective Lens ...... 53
   2.4  Electron Probe Diameter versus Electron Probe
        Current ................................................ 54
        2.4.1  Calculation of dmin and imax ..................... 54
               2.4.1.1  Minimum Probe Size ..................... 54
               2.4.1.2  Minimum Probe Size at 10-30 kV ......... 54
               2.4.1.3  Maximum Probe Current at 10-30 kV ...... 55
               2.4.1.4  Low-Voltage Operation .................. 55
               2.4.1.5  Graphical Summary ...................... 56
        2.4.2  Performance in the SEM Modes .................... 56
               2.4.2.1  Resolution Mode ........................ 56
               2.4.2.2  High-Current Mode ...................... 58
               2.4.2.3  Depth-of-Focus Mode .................... 59
               2.4.2.4  Low-Voltage SEM ........................ 59
               2.4.2.5  Environmental Barriers to High-
                        Resolution Imaging ..................... 59
   References .................................................. 60
3  Electron Beam-Specimen Interactions ......................... 61
   3.1  The Story So Far ....................................... 61
   3.2  The Beam Enters the Specimen ........................... 61
   3.3  The Interaction Volume ................................. 65
        3.3.1  Visualizing the Interaction Volume .............. 65
        3.3.2  Simulating the Interaction Volume ............... 67
        3.3.3 Influence of Beam and Specimen Parameters on
              the Interaction Volume ........................... 68
               3.3.3.1  Influence of Beam Energy on the 
                        Interaction Volume ..................... 68
               3.3.3.2  Influence of Atomic Number on the
                        Interaction Volume ..................... 69
               3.3.3.3  Influence of Specimen Surface Tilt on
                        the Interaction Volume ................. 71
        3.3.4  Electron Range: A Simple Measure of the
               Interaction Volume .............................. 72
               3.3.4.1  Introduction ........................... 72
               3.3.4.2  The Electron Range at Low Beam
                        Energy ................................. 73
   3.4  Imaging Signals from the Interaction Volume ............ 75
        3.4.1  Backscattered Electrons ......................... 75
               3.4.1.1  Atomic Number Dependence of BSE ........ 75
               3.4.1.2  Beam Energy Dependence of BSE .......... 77
               3.4.1.3  Tilt Dependence of BSE ................. 79
               3.4.1.4  Angular Distribution of BSE ............ 80
               3.4.1.5  Energy Distribution of BSE ............. 82
               3.4.1.6  Lateral Spatial Distribution of BSE .... 84
               3.4.1.7  Sampling Depth of BSE .................. 86
        3.4.2  Secondary Electrons ............................. 88
               3.4.2.1  Definition and Origin of SE ............ 88
               3.4.2.2  SE Yield with Primary Beam Energy ...... 89
               3.4.2.3  SE Energy Distribution ................. 91
               3.4.2.4  Range and Escape Depth of SE ........... 91
               3.4.2.5  Relative Contributions of SE1 and
                        SE2 .................................... 93
               3.4.2.6  Specimen Composition Dependence of
                        SE ..................................... 95
               3.4.2.7  Specimen Tilt Dependence of SE ......... 96
               3.4.2.8  Angular Distribution of SE ............. 97
   References .................................................. 97
4  Image Formation and Interpretation .......................... 99
   4.1  The Story So Far ....................................... 99
   4.2  The Basic SEM Imaging Process .......................... 99
        4.2.1  Scanning Action ................................ 101
        4.2.2  Image Construction (Mapping) ................... 103
               4.2.2.1  Line Scans ............................ 103
               4.2.2.2  Image (Area) Scanning ................. 104
               4.2.2.3  Digital Imaging: Collection and
                        Display ............................... 107
        4.2.3  Magnification .................................. 108
        4.2.4  Picture Element (Pixel) Size ................... 110
        4.2.5  Low-Magnification Operation .................... 114
        4.2.6  Depth of Field (Focus) ......................... 114
        4.2.7  Image Distortion ............................... 118
               4.2.7.1  Projection Distortion: Gnomonic
                        Projection ............................ 118
               4.2.7.2  Projection Distortion: Image
                        Foreshortening ........................ 119
               4.2.7.3  Scan Distortion: Pathological
                        Defects ............................... 123
               4.2.7.4  Moiré Effects ......................... 125
   4.3  Detectors ............................................. 125
        4.3.1  Introduction ................................... 125
        4.3.2  Electron Detectors ............................. 127
               4.3.2.1  Everhart-Thornley Detector ............ 128
               4.3.2.2  "Through-the-Lens" (TTL) Detector ..... 132
               4.3.2.3  Dedicated Backscattered Electron
                        Detectors ............................. 133
   4.4  The Roles of the Specimen and Detector in Contrast
        Formation ............................................. 139
        4.4.1  Contrast ....................................... 139
        4.4.2  Compositional (Atomic Number) Contrast ......... 141
               4.4.2.1  Introduction .......................... 141
               4.4.2.2  Compositional Contrast with
                        Backscattered Electrons ............... 141
        4.4.3  Topographic Contrast ........................... 145
               4.4.3.1  Origins of Topographic Contrast ....... 146
               4.4.3.2  Topographic Contrast with the
                        Everhart-Thornley Detector ............ 147
               4.4.3.3  Light-Optical Analogy ................. 151
               4.4.3.4  Interpreting Topographic Contrast
                        with Other Detectors .................. 158
   4.5  Image Quality ......................................... 173
   4.6  Image Processing for the Display of Contrast
        Information ........................................... 178
        4.6.1  The Signal Chain ............................... 178
        4.6.2  The Visibility Problem ......................... 180
        4.6.3  Analog and Digital Image Processing ............ 182
        4.6.4  Basic Digital Image Processing ................. 184
               4.6.4.1  Digital Image Enhancement ............. 187
               4.6.4.2  Digital Image Measurements ............ 192
   References ................................................. 192
5  Special Topics in Scanning Electron Microscopy ............. 195
   5.1  High-Resolution Imaging ............................... 195
        5.1.1  The Resolution Problem ......................... 195
        5.1.2  Achieving High Resolution at High Beam
               Energy ......................................... 197
        5.1.3  High-Resolution Imaging at Low Voltage ......... 201
   5.2  STEM-in-SEM: High Resolution for the Special Case
        of Thin Specimens ..................................... 203
   5.3  Surface Imaging at Low Voltage ........................ 207
   5.4  Making Dimensional Measurements in the SEM ............ 209
   5.5  Recovering the Third Dimension: Stereomicroscopy ...... 212
        5.5.1  Qualitative Stereo Imaging and Presentation .... 212
        5.5.2  Quantitative Stereo Microscopy ................. 217
   5.6  Variable-Pressure and Environmental SEM ............... 220
        5.6.1  Current Instruments ............................ 221
        5.6.2  Gas in the Specimen Chamber .................... 222
               5.6.2.1  Units of Gas Pressure ................. 222
               5.6.2.2  The Vacuum System ..................... 222
        5.6.3  Electron Interactions with Gases ............... 225
        5.6.4  The Effect of the Gas on Charging .............. 231
        5.6.5  Imaging in the ESEM and the VPSEM .............. 236
        5.6.6  X-Ray Microanalysis in the Presence of a Gas ... 241
   5.7  Special Contrast Mechanisms ........................... 242
        5.7.1  Electric Fields ................................ 243
        5.7.2  Magnetic Fields ................................ 245
               5.7.2.1  Type 1 Magnetic Contrast .............. 245
               5.7.2.2  Type 2 Magnetic Contrast .............. 247
        5.7.3  Crystallographic Contrast ...................... 247
   5.8  Electron Backscatter Patterns ......................... 256
        5.8.1  Origin of EBSD Patterns ........................ 260
        5.8.2  Hardware for EBSD .............................. 262
        5.8.3  Resolution of EBSD ............................. 264
               5.8.3.1  Lateral Spatial Resolution ............ 264
               5.8.3.2  Depth Resolution ...................... 266
        5.8.4  Applications ................................... 267
               5.8.4.1  Orientation Mapping ................... 267
               5.8.4.2  Phase Identification .................. 267
   References ................................................. 269
6  Generation of X-Rays in the SEM Specimen ................... 271
   6.1  Continuum X-Ray Production (Bremsstrahlung) ........... 271
   6.2  Characteristic X-Ray Production ....................... 274
        6.2.1  Origin ......................................... 274
        6.2.2  Fluorescence Yield ............................. 275
        6.2.3  Electron Shells ................................ 276
        6.2.4  Energy-Level Diagram ........................... 277
        6.2.5  Electron Transitions ........................... 277
        6.2.6  Critical Ionization Energy ..................... 278
        6.2.7  Moseley's Law .................................. 279
        6.2.8  Families of Characteristic Lines ............... 279
        6.2.9  Natural Width of Characteristic X-Ray Lines .... 281
        6.2.10 Weights of Lines ............................... 282
        6.2.11 Cross Section for Inner Shell Ionization ....... 283
        6.2.12 X-Ray Production in Thin Foils ................. 284
        6.2.13 X-Ray Production in Thick Targets .............. 284
        6.2.14 X-Ray Peak-to-Background Ratio ................. 285
   6.3  Depth of X-Ray Production (X-Ray Range) ............... 286
        6.3.1  Anderson-Hasler X-Ray Range .................... 286
        6.3.2  X-Ray Spatial Resolution ....................... 286
        6.3.3  Sampling Volume and Specimen Homogeneity ....... 288
        6.3.4  Depth Distribution of X-Ray Production,
               φ(ρz)........................................... 288
   6.4  X-Ray Absorption ...................................... 289
        6.4.1  Mass Absorption Coefficient for an Element ..... 290
        6.4.2  Effect of Absorption Edge on Spectrum .......... 291
        6.4.3  Absorption Coefficient for Mixed-Element
               Absorbers ...................................... 291
   6.5  X-Ray Fluorescence .................................... 292
        6.5.1  Characteristic Fluorescence .................... 293
        6.5.2  Continuum Fluorescence ......................... 294
        6.5.3  Range of Fluorescence Radiation ................ 295
   References ................................................. 295
7  X-Ray Spectral Measurement: EDS and WDS .................... 297
   7.1  Introduction .......................................... 297
   7-2  Energy-Dispersive X-Ray Spectrometer .................. 297
        7.2.1  Operating Principles ........................... 297
        7.2.2  The Detection Process .......................... 301
        7.2.3  Charge-to-Voltage Conversion ................... 302
        7.2.4  Pulse-Shaping Linear Amplifier and Pileup
               Rejection Circuitry ............................ 303
        7.2.5  The Computer X-Ray Analyzer .................... 308
        7.2.6  Digital Pulse Processing ....................... 311
        7.2.7  Spectral Modification Resulting from the
               Detection Process .............................. 312
               7.2.7.1  Peak Broadening ....................... 312
               7.2.7.2  Peak Distortion ....................... 316
               7.2.7.3  Silicon X-Ray Escape Peaks ............ 317
               7.2.7.4  Absorption Edges ...................... 318
               7.2.7.5  Silicon Internal Fluorescence Peak .... 320
        7.2.8  Artifacts from the Detector Environment ........ 321
        7.2.9  Summary of EDS Operation and Artifacts ......... 322
   7.3  Wavelength-Dispersive Spectrometer .................... 323
        7.3.1  Introduction ................................... 323
        7.3.2  Basic Description .............................. 324
        7.3.3  Diffraction Conditions ......................... 325
        7.3.4  Diffracting Crystals ........................... 327
        7.3.5  The X-Ray Proportional Counter ................. 330
        7.3.6  Detector Electronics ........................... 333
   7.4  Comparison of Wavelength-Dispersive Spectrometers
        with Conventional Energy-Dispersive Spectrometers ..... 340
        7.4.1  Geometric Collection Efficiency ................ 340
        7.4.2  Quantum Efficiency ............................. 341
        7.4.3  Resolution ..................................... 342
        7.4.4  Spectral Acceptance Range ...................... 344
        7.4.5  Maximum Count Rate ............................. 344
        7.4.6  Minimum Probe Size ............................. 344
        7.4.7  Speed of Analysis .............................. 346
        7.4.8  Spectral Artifacts ............................. 346
   7.5  Emerging Detector Technologies ........................ 347
        7.5.1  X-Ray Microcalorimetery ........................ 347
        7.5.2  Silicon Drift Detectors ........................ 349
        7.5.3  Parallel Optic Diffraction-Based
               Spectrometers .................................. 350
   References ................................................. 353
8  Qualitative X-Ray Analysis ................................. 355
   8.1  Introduction .......................................... 355
   8.2  EDS Qualitative Analysis .............................. 357
        8.2.1  X-Ray Peaks .................................... 357
        8.2.2  Guidelines for EDS Qualitative Analysis ........ 366
               8.2.2.1  General Guidelines for EDS
                        Qualitative Analysis .................. 368
               8.2.2.2  Specific Guidelines for EDS
                        Qualitative Analysis .................. 369
        8.2.3  Examples of Manual EDS Qualitative Analysis .... 372
        8.2.4  Pathological Overlaps in EDS Qualitative
               Analysis ....................................... 374
        8.2.5  Advanced Qualitative Analysis: Peak
               Stripping ...................................... 379
        8.2.6  Automatic Qualitative EDS Analysis ............. 381
   8.3  WDS Qualitative Analysis .............................. 382
        8.3.1  Wavelength-Dispersive Spectrometry of X-Ray
               Peaks .......................................... 382
        8.3.2  Guidelines for WDS Qualitative Analysis ........ 388
   References ................................................. 390
9  Quantitative X-Ray Analysis: The Basics .................... 391
   9.1  Introduction .......................................... 391
   9 2  Advantages of Conventional Quantitative X-Ray
        Microanalysis in the SEM .............................. 392
   9.3  Quantitative Analysis Procedures: Flat-Polished
        Samples ............................................... 393
   9.4  The Approach to X-Ray Quantitation: The Need for
        Matrix Corrections .................................... 402
   9.5  The Physical Origin of Matrix Effects ................. 403
   9.6  ZAF Factors in Microanalysis .......................... 404
        9.6.1  Atomic number effect, Z ........................ 404
               9.6.1.1  Effect of Backscattering (R) and
                        Energy Loss (S) ....................... 404
               9.6.1.2  X-Ray Generation with Depth, φ(ρz) .... 406
        9.6.2  X-Ray Absorption Effect, A ..................... 411
        9.6.3  X-Ray Fluorescence, F .......................... 415
   9.7  Calculation of ZAF Factors ............................ 416
        9.7.1  Atomic Number Effect, Z ........................ 417
        9.7.2  Absorption correction, A ....................... 417
        9.7.3  Characteristic Fluorescence Correction, F ...... 418
        9.7.4  Calculation of ZAF ............................. 418
        9.7.5  The Analytical Total ........................... 420
   9.8  Practical Analysis .................................... 421
        9.8.1  Examples of Quantitative Analysis .............. 421
               9.8.1.1  Al-Cu Alloys .......................... 421
               9.8.1.2  Ni-10 wt% Fe Alloy .................... 423
               9.8.1.3  Ni-38.5 wt% Cr-3.0 wt% Al Alloy ....... 423
               9.8.1.4  Pyroxene: 53.5 wt% SiO2, 1.11 wt%
                        A1203, 0.62 wt% Cr203, 9.5 wt% FeO,
                        14.1 wt% MgO, and 21.2 wt% CaO ........ 425
        9.8.2  Standardless Analysis .......................... 427
               9.8.2.1  First-Principles Standardless
                        Analysis .............................. 429
               9.8.2.2  "Fitted-Standards" Standardless
                        Analysis .............................. 433
        9.8.3  Special Procedures for Geological Analysis ..... 436
               9.8.3.1  Introduction .......................... 436
               9.8.3.2  Formulation of the Bence-Albee
                        Procedure ............................. 437
               9.8.3.3  Application of the Bence-Albee
                        Procedure ............................. 438
               9.8.3.4  Specimen Conductivity ................. 439
        9.8.4  Precision and Sensitivity in X-Ray Analysis .... 440
               9.8.4.1  Statistical Basis for Calculating
                        Precision and Sensitivity ............. 440
               9.8.4.2  Precision of Composition .............. 442
               9.8.4.3  Sample Homogeneity .................... 444
               9.8.4.4  Analytical Sensitivity ................ 445
               9.8.4.5  Trace Element Analysis ................ 446
               9.8.4.6  Trace Element Analysis
                        Geochronologic Applications ........... 448
               9.8.4.7  Biological and Organic Specimens ...... 449
   References ................................................. 449
10 Special Topics in Electron Beam X-Ray Microanalysis ........ 453
   10.1 Introduction .......................................... 453
   10.2 Thin Film on a Substrate .............................. 454
   10.3 Particle Analysis ..................................... 462
        10.3.1 Particle Mass Effect ........................... 463
        10.3.2 Particle Absorption Effect ..................... 463
        10.3.3 Particle Fluorescence Effect ................... 464
        10.3.4 Particle Geometric Effects ..................... 465
        10.3.5 Corrections for Particle Geometric Effects ..... 466
               10.3.5.1 The Consequences of Ignoring
                        Particle Effects ...................... 466
               10.3.5.2 Normalization ......................... 466
               10.3.5.3 Critical Measurement Issues for
                        Particles ............................. 468
               10.3.5.4 Advanced Quantitative Methods for
                        Particles ............................. 470
   10.4 Rough Surfaces ........................................ 476
        10.4.1 Introduction ................................... 476
        10.4.2 Rough Specimen Analysis Strategy ............... 479
               10.4.2.1 Reorientation ......................... 479
               10.4.2.2 Normalization ......................... 479
               10.4.2.3 Peak-to-Background Method ............. 479
   10.5 Beam-Sensitive Specimens (Biological, Polymeric) ...... 480
        10.5.1 Thin-Section Analysis .......................... 480
        10.5.2 Bulk Biological and Organic Specimens .......... 483
   10.6 X-Ray Mapping ......................................... 485
        10.6.1 Relative Merits of WDS and EDS for Mapping ..... 486
        10.6.2 Digital Dot Mapping ............................ 487
        10.6.3 Gray-Scale Mapping ............................. 488
               10.6.3.1 The Need for Scaling in Gray-Scale
                        Mapping ............................... 489
               10.6.3.2 Artifacts in X-Ray Mapping ............ 491
        10.6.4 Compositional Mapping .......................... 492
               10.6.4.1 Principles of Compositional Mapping ... 492
               10.6.4.2 Advanced Spectrum Collection
                        Strategies for Compositional
                        Mapping ............................... 494
       10.6.5 The Use of Color in Analyzing and Presenting
              X-Ray Maps ...................................... 497
              10.6.5.1 Primary Color Superposition ............ 497
              10.6.5.2 Pseudocolor Scales ..................... 497
   10.7 Light Element Analysis ................................ 499
        10.7.1 Optimization of Light Element X-Ray
               Generation ..................................... 499
        10.7.2 X-Ray Spectrometry of the Light Elements ....... 503
               10.7.2.1 Si EDS ................................ 503
               10.7.2.2 WDS ................................... 507
        10.7.3 Special Measurement Problems for the Light
               Elements ....................................... 511
               10.7.3.1 Contamination ......................... 511
               10.7.3.2 Overvoltage Effects ................... 512
               10.7.3.3 Absorption Effects .................... 514
        10.7.4 Light Element Quantification ................... 515
   10.8 Low-Voltage Microanalysis ............................. 518
        10.8.1 "Low-Voltage" versus "Conventional"
                Microanalysis ................................. 518
        10.8.2 X-Ray Production Range ......................... 519
               10.8.2.1 Contribution of the Beam Size to the
                        X-Ray Analytical Resolution ........... 520
               10.8.2.2 A Consequence of the X-Ray Range
                        under Low-Voltage Conditions .......... 523
        10.8.3 X-Ray Spectrometry in Low-Voltage
               Microanalysis .................................. 525
               10.8.3.1 The Oxygen and Carbon Problem ......... 526
               10.8.3.2 Quantitative X-Ray Microanalysis at
                        Low Voltage ........................... 528
   10.9 Report of Analysis .................................... 531
   References ................................................. 535
11 Specimen Preparation of Hard Materials: Metals, Ceramics,
   Rocks, Minerals, Microelectronic and Packaged Devices,
   Particles, and Fibers ...................................... 537
   11.1 Metals ................................................ 537
        11.1.1 Specimen Preparation for Surface Topography .... 537
        11.1.2 Specimen Preparation for Microstructural and
               Microchemical Analysis ......................... 538
               11.1.2.1 Initial Sample Selection and
                        Specimen Preparation Steps ............ 538
               11.1.2.2 Final Polishing Steps ................. 539
               11.1.2.3 Preparation for Microanalysis ......... 540
   11.2 Ceramics and Geological Samples ....................... 541
        11.2.1 Initial Specimen Preparation: Topography and
               Microstructure ................................. 542
        11.2.2 Mounting and Polishing for Microstructural
               and Microchemical Analysis ..................... 542
        11.2.3 Final Specimen Preparation for
               Microstructural and Microchemical Analysis ..... 542
   11.3 Microelectronics and Packages ......................... 543
        11.3.1 Initial Specimen Preparation ................... 543
        11.3.2 Polishing ...................................... 544
        11.3.3 Final Preparation .............................. 545
   11.4 Imaging of Semiconductors ............................. 545
        11.4.1 Voltage Contrast ............................... 546
        11.4.2 Charge Collection .............................. 546
   11.5 Preparation for Electron Diffraction in the SEM ....... 547
        11.5.1 Channeling Patterns and Channeling Contrast .... 547
        11.5.2 Electron Backscatter Diffraction ............... 547
   11.6 Special Techniques .................................... 551
        11.6.1 Plasma Cleaning ................................ 551
        11.6.2 Focused-Ion-Beam Sample Preparation for SEM .... 553
               11.6.2.1 Application of FIB for
                        Semiconductors ........................ 554
               11.6.2.2 Applications of FIB in Materials
                        Science ............................... 555
   11.7 Particles and Fibers .................................. 557
        11.7.1 Particle Substrates and Supports ............... 559
               11.7.1.1 Bulk Particle Substrates .............. 559
               11.7.1.2 Thin Particle Supports ................ 560
        11.7.2 Particle Mounting Techniques ................... 560
        11.7.3 Particles Collected on Filters ................. 562
        11.7.4 Particles in a Solid Matrix .................... 563
        11.7.5 Transfer of Individual Particles ............... 563
   References ................................................. 564
12 Specimen Preparation of Polymer Materials .................. 565
   12.1 Introduction .......................................... 565
   12.2 Microscopy of Polymers ................................ 565
        12.2.1 Radiation Effects .............................. 566
        12.2.2 Imaging Compromises ............................ 567
        12.2.3 Metal Coating Polymers for Imaging ............. 567
        12.2.4 X-Ray Microanalysis of Polymers ................ 570
   12.3 Specimen Preparation Methods for Polymers ............. 570
        12.3.1 Simple Preparation Methods ..................... 571
        12.3.2 Polishing of Polymers .......................... 571
        12.3.3 Microtomy of Polymers .......................... 572
        12.3.4 Fracture of Polymer Materials .................. 573
        12.3.5 Staining of Polymers ........................... 576
               12.3.5.1 Osmium Tetroxide and Ruthenium
                        Tetroxide ............................. 578
               12.3.5.2 Ebonite ............................... 578
               12.3.5.3 Chlorosulfonic Acid and
                        Phosphotungstic Acid .................. 578
        12.3.6 Etching of Polymers ............................ 579
        12.3.7 Replication of Polymers ........................ 580
        12.3.8 Rapid Cooling and Drying Methods for
               Polymers ....................................... 580
               12.3.8.1 Simple Cooling Methods ................ 580
               12.3.8.2 Freeze-Drying ......................... 581
               12.3.8.3 Critical-Point Drying ................. 581
   12.4 Choosing Specimen Preparation Methods ................. 581
        12.4.1 Fibers ......................................... 582
        12.4.2 Films and Membranes ............................ 582
        12.4.3 Engineering Resins and Plastics ................ 583
        12.4.4 Emulsions and Adhesives ........................ 587
   12.5 Problem-Solving Protocol .............................. 588
   12.6 Image Interpretation and Artifacts .................... 589
   References ................................................. 590
13 Ambient-Temperature Specimen Preparation of Biological
   Material ................................................... 591
   13.1 Introduction .......................................... 591
   13.2 Preparative Procedures for the Structural SEM of
        Single Cells, Biological Particles, and Fibers ........ 592
        13.2.1 Particulate, Cellular, and Fibrous Organic
               Material ....................................... 592
        13.2.2 Dry Organic Particles and Fibers ............... 593
               13.2.2.1 Organic Particles and Fibers on
                        a Filter .............................. 594
               13.2.2.2 Organic Particles and Fibers
                        Entrained within a Filter ............. 594
               13.2.2.3 Organic Particulate Matter Suspended
                        in a Liquid ........................... 594
               13.2.2.4 Manipulating Individual Organic
                        Particles ............................. 595
   13.3 Preparative Procedures for the Structural
        Observation of Large Soft Biological Specimens ........ 596
        13.3.1 Introduction ................................... 596
        13.3.2 Sample Handling before Fixation ................ 596
        13.3.3 Fixation ....................................... 596
        13.3.4 Microwave Fixation ............................. 597
        13.3.5 Conductive Infiltration ........................ 597
        13.3.6 Dehydration .................................... 597
        13.3.7 Embedding ...................................... 602
        13.3.8 Exposing the Internal Contents of Bulk
               Specimens ...................................... 602
               13.3.8.1 Mechanical Dissection ................. 602
               13.3.8.2 High-Energy-Beam Surface Erosion ...... 602
               13.3.8.3 Chemical Dissection ................... 603
               13.3.8.4 Surface Replicas and Corrosion
                        Casts ................................. 604
        13.3.9 Specimen Supports and Methods of Sample
               Attachment ..................................... 605
        13.3.10 Artifacts ..................................... 607
   13.4 Preparative Procedures for the in Situ Chemical
        Analysis of Biological Specimens in the SEM ........... 607
        13.4.1 Introduction ................................... 607
        13.4.2 Preparative Procedures for Elemental Analysis
               Using X-Ray Microanalysis ...................... 608
               13.4.2.1 The Nature and Extent of the
                        Problem ............................... 608
               13.4.2.2 Types of Sample That May be Analyzed .. 609
               13.4.2.3 The General Strategy for Sample
                        Preparation ........................... 609
               13.4.2.4 Criteria for Judging Satisfactory
                        Sample Preparation .................... 610
               13.4.2.5 Fixation and Stabilization ............ 610
               13.4.2.6 Precipitation Techniques .............. 611
               13.4.2.7 Procedures for Sample Dehydration,
                        Embedding, and Staining ............... 611
               13.4.2.8 Specimen Supports ..................... 611
        13.4.3 Preparative Procedures for Localizing
               Molecules Using Histochemistry ................. 612
               13.4.3.1 Staining and Histochemical Methods .... 612
               13.4.3.2 Atomic Number Contrast with
                        Backscattered Electrons ............... 613
        13.4.4 Preparative Procedures for Localizing
               Macromolecues Using Immunocytochemistry ........ 614
               13.4.4.1 Introduction .......................... 614
               13.4.4.2 The Antibody-Antigen Reaction ......... 614
               13.4.4.3 General Features of Specimen
                        Preparation for Immunocytochemistry ... 615
               13.4.4.4 Imaging Procedures in the SEM ......... 616
   References ................................................. 618
14 Low-Temperature Specimen Preparation ....................... 621
   14.1 Introduction .......................................... 621
   14.2 The Properties ofLiquid Water and Ice ................. 622
   14.3 Conversion of Liquid Water to Ice ..................... 623
   14.4 Specimen Pretreatment before Rapid (Quench) Cooling ... 624
        14.4.1 Minimizing Sample Size and Specimen Holders .... 624
        14.4.2 Maximizing Undercooling ........................ 626
        14.4.3 Altering the Nucleation Process ................ 626
        14.4.4 Artificially Depressing the Sample Freezing
               Point .......................................... 626
        14.4.5 Chemical Fixation .............................. 626
   14.5 Quench Cooling ........................................ 627
        14.5.1 Liquid Cryogens ................................ 627
        14.5.2 Solid Cryogens ................................. 628
        14.5.3 Methods for Quench Cooling ..................... 629
        14.5.4 Comparison of Quench Cooling Rates ............. 630
   14.6 Low-Temperature Storage and Sample Transfer ........... 631
   14.7 Manipulation of Frozen Specimens: Cryosectioning,
        Cryofracturing, and Cryoplaning ....................... 631
        14.7.1 Cryosectioning ................................. 631
        14.7.2 Cryofracturing ................................. 633
        14.7.3 Cryopolishing or Cryoplaning ................... 634
   14.8 Ways to Handle Frozen Liquids within the Specimen ..... 635
        14.8.1 Frozen-Hydrated and Frozen Samples ............. 636
        14.8.2 Freeze-Drying .................................. 637
               14.8.2.1 Physical Principles Involved in
                        Freeze-Drying ......................... 637
               14.8.2.2 Equipment Needed for Freeze-Drying .... 638
               14.8.2.3 Artifacts Associated with Freeze-
                        Drying ................................ 639
        14.8.3 Freeze Substitution and Low-Temperature
               Embedding ...................................... 639
               14.8.3.1 Physical Principles Involved in
                        Freeze Substitution and Low-
                        Temperature Embedding ................. 639
               14.8.3.2 Equipment Needed for Freeze
                        Substitution and Low-Temperature
                        Embedding ............................. 640
   14.9 Procedures for Hydrated Organic Systems ............... 640
   14.10 Procedures for Hydrated Inorganic Systems ............ 641
   14.11 Procedures for Nonaqueous Liquids .................... 642
   14.12 Imaging and Analyzing Samples at Low Temperatures .... 643
   References ................................................. 644
15 Procedures for Elimination of Charging in Nonconducting
   Specimens .................................................. 647
   15.1 Introduction .......................................... 647
   15.2 Recognizing Charging Phenomena ........................ 650
   15.3 Procedures for Overcoming the Problems of Charging .... 656
   15.4 Vacuum Evaporation Coating ............................ 657
        15.4.1 High-Vacuum Evaporation Methods ................ 658
        15.4.2 Low-Vacuum Evaporation Methods ................. 661
   15.5 Sputter Coating ....................................... 661
        15.5.1 Plasma Magnetron Sputter Coating ............... 662
        15.5.2 Ion Beam and Penning Sputtering ................ 664
   15.6 High-Resolution Coating Methods ....................... 667
   15.7 Coating for Analytical Studies ........................ 669
   15.8 Coating Procedures for Samples Maintained at Low
        Temperatures .......................................... 669
   15 9 Coating Thickness ..................................... 670
   15.10 Damage and Artifacts on Coated Samples ............... 672
   15.11 Summary of Coating Guidelines ........................ 673
   References ................................................. 673

Index ......................................................... 675
Enhancements CD


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:24 2019. Размер: 46,088 bytes.
Посещение N 1496 c 04.12.2012