s Scesi L. Water circulation in rocks (Dordrecht; New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаScesi L. Water circulation in rocks / L.Scesi, P.Gattinoni. - Dordrecht; New York: Springer, 2009. - vii, 165 p.: ill. - Ref.: p.155-162. - Ind.: p.163-165. - ISBN 978-90-481-2416-9
 

Оглавление / Contents
 
1  Introduction to Water Circulation in Rocks ................... 1
   1.1  General Observations .................................... 1
   1.2  Origin of Discontinuities ............................... 2
   1.3  Features of Discontinuities ............................. 3
        1.3.1  Orientation ...................................... 4
        1.3.2  Degree of Fracturing ............................. 6
        1.3.3  Persistence ...................................... 8
        1.3.4  Aperture and Filling ............................. 9
        1.3.5  Roughness ....................................... 10
        1.3.6  Weathering ...................................... 12
        1.3.7  Moisture Conditions and Seepage ................. 12
   1.4  Graphical Representation of Discontinuities ............ 13
        1.4.1  Equal Areal Projections ......................... 14
        1.4.2  Equal Angle Projections ......................... 16
   1.5  Basic Elements for Hydrogeological Conceptual Model
        Definition ............................................. 19
        1.5.1  The Work Scale .................................. 21
        1.5.2  Elementary Representative Volume ................ 22
        1.5.3  Changing of Fracturing Degree with Depth ........ 23
   1.6  Probabilistic Generation of Discontinuity Network ...... 24

2  Hydraulic Conductivity Assessment ........................... 29
   2.1  Introduction ........................................... 29
   2.2  Deterministic Methodologies ............................ 29
        2.2.1  Hydraulic Conductivity Along a Single 
               Fracture ........................................ 29
        2.2.2  Hydraulic Conductivity Along a Fracture 
               System .......................................... 32
        2.2.3  Hydraulic Conductivity Tensor ................... 33
        2.2.4  Equivalent Hydraulic Conductivity ............... 35
   2.3  Probabilistic Methodologies: Percolation Theory ........ 36
   2.4  In Situ Tests .......................................... 41
        2.4.1  Lugeon Tests .................................... 41
        2.4.2  Hydrogeochemical Methods ........................ 42
        2.4.3  Hydraulic Tests in Double-Porosity Aquifers ..... 44
        2.4.4  Hydraulic Tests in Anisotropic Aquifers ......... 46

3  Influence of Joint Features on Rock Mass Hydraulic
   Conductivity ................................................ 49
   3.1  Introduction ........................................... 49
   3.2  Influence of Joint Roughness ........................... 49
        3.2.1  Effects of Roughness on Hydraulic Conductivity
               of a Single Joint: Theoretical Analysis ......... 50
        3.2.2  Effects of Roughness on Hydraulic Conductivity
               of a Single Joint: Experimental Checking ........ 53
        3.2.3  Effects of Roughness on Rock Mass Hydraulic
               Conductivity .................................... 56
   3.3  Influence of Joint Aperture ............................ 58
        3.3.1  Changes in Aperture with Depth .................. 59
        3.3.2  Changes in Aperture with the Stress Field ....... 63
   3.4  Influence of Joint Spacing and Frequency ............... 67
   3.5  Joints Interconnection ................................. 69

4  Main Flow Direction in Rock Masses .......................... 73
   4.1  Introduction ........................................... 73
   4.2  Anisotropy of the Fractured Medium ..................... 73
   4.3  Main Flow Direction in Fractured Media ................. 76
   4.4  Non-saturated Medium ................................... 77
   4.5  Non-saturated Medium: Main Flow Direction with
        an Impermeable Layer.................................... 81
   4.6  Saturated Medium ....................................... 82
        4.6.1  Known Hydraulic Gradient ........................ 83
        4.6.2  Unknown Hydraulic Gradient ...................... 84

5  Methods and Models to Simulate the Groundwater Flow in
   Rock Masses ................................................. 87
   5.1  Introduction ........................................... 87
   5.2  Basic Elements of a Modeling Approach .................. 87
        5.2.1  Definition of the Conceptual Model .............. 89
        5.2.2  The Model Project ............................... 90
        5.2.3  Choice of the Numerical Code .................... 90
   5.3  Darcy's Model .......................................... 91
   5.4  Discrete Models ........................................ 93
   5.5  Dual Porosity Models ................................... 97

6  Case Histories ............................................. 101
   6.1  Groundwater Flow and Slope Stability .................. 101
   6.2  Evaluation of the Hydrogeological Risk 
        Linked with Tunneling ................................. 108
        6.2.1  Reconstruction of the Groundwater Flow ......... 110
        6.2.2  Estimation of the Tunnel Inflow ................ 111
        6.2.3  Delimitation of the Tunnel Influence Zone ...... 116
        6.2.4  Hydrogeological Risk Analysis .................. 123
   6.3  Hydrogeological Risk Linked with Road Construction .... 127
   6.4  Mountain Aquifer Exploitation and Safeguard:
        Eva Verda Basin Case Study 
        Saint Marcel, Aosta Valley, Italy) .................... 135
        6.4.1 Hydrogeological Reconstruction .................. 138
   6.5  Stochastic Groundwater Modeling for the Drying
        Risk Assessment ....................................... 144
        6.5.1  Hydrogeological Setting of the Study Area ...... 145
        6.5.2  Groundwater Model of the Nossana Spring ........ 147
        6.5.3  Factors Involved in the Depletion Curve ........ 151
        6.5.4  Drying Risk Assessment ......................... 153

References .................................................... 155

Index ......................................................... 163



Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2020 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:24 2019. Размер: 9,751 bytes.
Посещение N 763 c 04.120.2012