Schobeiri M. Turbomachinery flow physics and dynamic performance (Berlin, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSchobeiri M. Turbomachinery flow physics and dynamic performance. - 2nd ed. - Berlin: Springer, 2012. - xxvi, 725 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.717-725. - ISBN 978-3-642-24674-6
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
I Turbomachinery Flow Physics

1  Introduction, Turbomachinery, Applications, Types ............ 3
   1.1  Turbine ................................................. 3
   1.2  Compressor .............................................. 7
   1.3  Application of Turbomachines ............................ 9
        1.3.1  Power Generation, Steam Turbines ................. 9
        1.3.2  Power Generation, Gas Turbines ................... 9
        1.3.3  Aircraft Gas Turbines ........................... 10
        1.3.4  Diesel Engine Application ....................... 12
   1.4  Classification of Turbomachines ........................ 13
        1.4.1  Compressor Types ................................ 13
        1.4.2  Turbine Types ................................... 14
   1.5  Working Principle of a Turbomachine .................... 14
   References .................................................. 14
2  Kinematics of Turbomachinery Fluid Motion ................... 15
   2.1  Material and Spatial Description of the Flow Field ..... 15
        2.1.1  Material Description ............................ 15
        2.1.2  Jacobian Transformation Function and Its
               Material Derivative ............................. 17
        2.1.3  Spatial Description ............................. 20
   2.2  Translation, Deformation, Rotation ..................... 21
   2.3  Reynolds Transport Theorem ............................. 25
   References .................................................. 27
3  Differential Balances in Turbomachinery ..................... 29
   3.1  Mass Flow Balance in Stationary Frame of Reference ..... 29
        3.1.1  Incompressibility Condition ..................... 31
   3.2  Differential Momentum Balance in Stationary Frame of
        Reference .............................................. 32
        3.2.1  Relationship between Stress Tensor and
               Deformation Tensor .............................. 34
        3.2.2  Navier-Stokes Equation of Motion ................ 36
        3.2.3  Special Case: Euler Equation of Motion .......... 38
   3.3  Some Discussions on Navier-Stokes Equations ............ 41
   3.4  Energy Balance in Stationary Frame of Reference ........ 42
        3.4.1  Mechanical Energy ............................... 42
        3.4.2  Thermal Energy Balance .......................... 45
        3.4.3  Total Energy .................................... 48
        3.4.4  Entropy Balance ................................. 49
   3.5  Differential Balances in Rotating Frame of Reference ... 50
        3.5.1  Velocity and Acceleration in Rotating Frame ..... 50
        3.5.2  Continuity Equation in Rotating Frame of
               Reference ....................................... 52
        3.5.3  Equation of Motion in Rotating Frame of
               Reference ....................................... 53
        3.5.4  Energy Equation in Rotating Frame of
               Reference ....................................... 55
   References .................................................. 57
4  Integral Balances in Turbomachinery ......................... 59
   4.1  Mass Flow Balance ...................................... 59
   4.2  Balance of Linear Momentum ............................. 61
   4.3  Balance of Moment of Momentum .......................... 66
   4.4  Balance of Energy ...................................... 72
        4.4.1  Energy Balance Special Case 1: Steady Flow ...... 77
        4.4.2  Energy Balance Special Case 2: Steady Flow,
               Constant Mass Flow .............................. 78
   4.5  Application of Energy Balance to Turbomachinery
        Components ............................................. 78
        4.5.1  Application: Accelerated, Decelerated Flows ..... 79
        4.5.2  Application: Combustion Chamber ................. 80
        4.5.3  Application: Turbine, Compressor ................ 81
               4.5.3.1  Uncooled Turbine ....................... 81
               4.5.3.2  Cooled Turbine ......................... 82
               4.5.3.3  Uncooled Compressor .................... 83
   4.6  Irreversibility and Total Pressure Losses .............. 84
        4.6.1  Application of Second Law to Turbomachinery
               Components ...................................... 85
   4.7  Flow at High Subsonic and Transonic Mach Numbers ....... 87
        4.7.1  Density Changes with Mach Number, Critical
               State ........................................... 88
        4.7.2  Effect of Cross-Section Change on Mach Number ... 93
        4.7.3  Compressible Flow through Channels with
               Constant Cross Section ......................... 101
        4.7.4  The Normal Shock Wave Relations ................ 109
        4.7.5  The Oblique Shock Wave Relations ............... 115
        4.7.6  The Detached Shock Wave ........................ 119
        4.7.7  Prandtl-Meyer Expansion ........................ 119
   References ................................................. 122
5  Theory of Turbomachinery Stages ............................ 123
   5.1  Energy Transfer in Turbomachinery Stages .............. 123
   5.2  Energy Transfer in Relative Systems ................... 124
   5.3  General Treatment of Turbine and Compressor Stages .... 125
   5.4  Dimensionless Stage Parameters ........................ 129
   5.5  Relation between Degree of Reaction and Blade
        Height ................................................ 131
   5.6  Effect of Degree of Reaction on the Stage
        Configuration ......................................... 134
   5.7  Effect of Stage Load Coefficient on Stage Power ....... 136
   5.8  Unified Description of a Turbomachinery Stage ......... 137
        5.8.1  Unified Description of Stage with Constant
               Mean Diameter .................................. 137
        5.8.2  Generalized Dimensionless Stage Parameters ..... 138
   5.9  Special Cases ......................................... 140
        5.9.1  Case 1, Constant Mean Diameter ................. 141
        5.9.2  Case 2, Constant Mean Diameter and Meridional
               Velocity Ratio ................................. 141
   5.10 Increase of Stage Load Coefficient, Discussion ........ 140
   References ................................................. 144
6  Turbine and Compressor Cascade Flow Forces ................. 145
   6.1  Blade Force in an Inviscid Flow Field ................. 145
   6.2  Blade Forces in a Viscous Flow Field .................. 150
   6.3  The Effect of Solidity on Blade Profile Losses ........ 156
   6.4  Relationship Between Profile Loss Coefficient and
        Drag .................................................. 156
   6.5  Optimum Solidity ...................................... 158
        6.5.1  Optimum Solidity, by Pfeil ..................... 158
        6.5.2  Optimum Solidity, by Zweifel ................... 158
   6.6  Generalized Lift-Solidity Coefficient ................. 162
        6.6.1  Lift-Solidity Coefficient for Turbine Stator ... 164
        6.6.2  Turbine Rotor .................................. 168
   References ................................................. 171

II  Turbomachinery Losses, Efficiencies, Blades

7  Losses in Turbine and Compressor Cascades .................. 175
   7.1  Turbine Profile Loss .................................. 176
   7.2  Viscous Flow in Compressor Cascade .................... 178
        7.2.1  Calculation of Viscous Flows ................... 178
        7.2.2  Boundary Layer Thicknesses ..................... 179
        7.2.3  Boundary Layer Integral Equation ............... 181
        7.2.4  Application of Boundary Layer Theory to
               Compressor Blades .............................. 182
        7.2.5  Effect of Reynolds Number ...................... 186
        7.2.6  Stage Profile Losses ........................... 186
   7.3  Trailing Edge Thickness Losses ........................ 186
   7.4  Losses Due to Secondary Flows ......................... 192
        7.4.1  Vortex Induced Velocity Field, Law of Bio-
               Savart ......................................... 194
        7.4.2  Calculation of Tip Clearance Secondary Flow
               Losses ......................................... 197
        7.4.3  Calculation of Endwall Secondary Flow Losses ... 200
   7.5  Flow Losses in Shrouded Blades ........................ 204
        7.5.1  Losses Due to Leakage Flow in Shrouds .......... 204
   7.6  Exit Loss ............................................. 211
   7.7  Trailing Edge Ejection Mixing Losses of Gas Turbine
        Blades ................................................ 212
        7.7.1  Calculation of Mixing Losses ................... 212
        7.7.2  Trailing Edge Ejection Mixing Losses ........... 217
        7.7.3  Effect of Ejection Velocity Ratio on Mixing
               Loss ........................................... 217
        7.7.4  Optimum Mixing Losses .......................... 219
   7.8  Stage Total Loss Coefficient .......................... 219
   7.9  Diffusers, Configurations, Pressure Recovery,
        Losses ................................................ 220
        7.9.1  Diffuser Configurations ........................ 221
        7.9.2  Diffuser Pressure Recovery ..................... 222
        7.9.3  Design of Short Diffusers ...................... 225
        7.9.4  Some Guidelines for Designing High Efficiency
               Diffusers ...................................... 228
   References ................................................. 229
8  Efficiency of Multi-stage Turbomachines .................... 231
   8.1  Polytropic Efficiency ................................. 231
   8.2  Isentropic Turbine Efficiency, Recovery Factor ........ 234
   8.3  Compressor Efficiency, Reheat Factor .................. 237
   8.4  Polytropic versus Isentropic Efficiency ............... 239
   References ................................................. 240
9  Incidence and Deviation .................................... 241
   9.1  Cascade with Low Flow Deflection ...................... 241
        9.1.1  Conformal Transformation ....................... 241
        9.1.2  Flow Through an Infinitely Thin Circular Arc
               Cascade ........................................ 250
        9.1.3  Thickness Correction ........................... 256
        9.1.4  Optimum Incidence .............................. 256
        9.1.5  Effect of Compressibility ...................... 258
   9.2  Deviation for High Flow Deflection .................... 259
        9.2.1  Calculation of Exit Flow Angle ................. 261
   References ................................................. 263
10 Simple Blade Design ........................................ 265
   10.1 Conformal Transformation, Basics ...................... 265
        10.1.1 Joukowsky Transformation ....................... 267
        10.1.2 Circle-Flat Plate Transformation ............... 267
        10.1.3 Circle-Ellipse Transformation .................. 268
        10.1.4 Circle-Symmetric Airfoil Transformation ........ 269
        10.1.5 Circle-Cambered Airfoil Transformation ......... 271
   10.2 Compressor Blade Design ............................... 272
        10.2.1 Low Subsonic Compressor Blade Design ........... 273
        10.2.2 Compressors Blades for High Subsonic Mach
               Number ......................................... 279
        10.2.3 Transonic, Supersonic Compressor Blades ........ 280
   10.3 Turbine Blade Design .................................. 281
   10.3.1 Graphic Design of Camberline ........................ 282
        10.3.2 Camberline Coordinates Using Bèzier Curve ...... 283
        10.3.3 Alternative Calculation Method ................. 285
   10.4 Assessment of Blades Aerodynamic Quality .............. 287
   References ................................................. 290
11 Radial Equilibrium ......................................... 291
   11.1 Derivation of Equilibrium Equation .................... 292
   11.2 Application of Streamline Curvature Method ............ 300
        11.2.1 Step-by-step solution procedure ................ 302
   11.2 Compressor Examples ................................... 306
   11.3 Turbine Example, Compound Lean Design ................. 309
        11.3.1 Blade Lean Geometry ............................ 310
        11.3.2 Calculation of Compound Lean Angle
               Distribution ................................... 311
        11.3.3 Example: Three-Stage Turbine Design ............ 313
   11.4 Special Cases ......................................... 316
        11.4.1 Free Vortex Flow ............................... 316
        11.4.2 Forced vortex flow ............................. 317
        11.4.3 Flow with constant flow angle .................. 318
   References ................................................. 319

III Turbomachinery Dynamic Performance

12 Dynamic Simulation of Turbomachinery Components ............ 323
   12.1 Theoretical Background ................................ 324
   12.2 Preparation for Numerical Treatment ................... 330
   12.3 One-Dimensional Approximation ......................... 331
        12.3.1 Time Dependent Equation of Continuity .......... 331
        12.3.2 Time Dependent Equation of Motion .............. 333
        12.3.3 Time Dependent Equation of Total Energy ........ 334
   12.4 Numerical Treatment ................................... 339
   References ................................................. 340
13 Generic Modeling of Turbomachinery Components .............. 341
   13.1 Generic Component, Modular Configuration .............. 342
        13.1.1 Plenum as Coupling Module ...................... 343
        13.1.2 Group 1: Modules: Inlet, Exhaust, Pipe ......... 345
        13.1.3 Group 2: Recuperators, Combustion Chambers,
               Afterburners ................................... 346
        13.1.4 Group 3: Adiabatic Compressor and Turbine
               Components ..................................... 348
        13.1.5 Group 4: Diabatic Turbine and Compressor
               Components ..................................... 350
        13.1.6 Group 5: Control System, Valves, Shaft,
               Sensors ........................................ 352
   13.2 System Configuration, Nonlinear Dynamic Simulation .... 352
   References ................................................. 356
14 Modeling of Inlet, Exhaust, and Pipe Systems ............... 357
   14.1 Unified Modular Treatment ............................. 357
   14.2 Physical and Mathematical Modeling of Modules ......... 357
   14.3 Example: Dynamic behavior of a Shock Tube ............. 360
        14.3.1 Shock Tube Dynamic Behavior .................... 361
   References ................................................. 365
15 Modeling of Recuperators, Combustors, Afterburners ......... 367
   15.1 Modeling Recuperators ................................. 368
        15.1.1 Recuperator Hot Side Transients ................ 369
        15.1.2 Recuperator Cold Side Transients ............... 369
        15.1.3 Coupling Condition Hot, Cold Side .............. 370
        15.1.4 Recuperator Heat Transfer Coefficient .......... 371
   15.2 Modeling Combustion Chambers .......................... 372
        15.2.1 Mass Flow Transients ........................... 373
        15.2.2 Temperature Transients ......................... 374
        15.2.3 Combustion Chamber Heat Transfer ............... 376
   15.3 Example: Startup and Shutdown of a Combustion
        Chamber ............................................... 378
   15.4 Modeling of Afterburners .............................. 381
   References ................................................. 382
16 Modeling of Compressor Component, Design, Off-Design ....... 383
   16.1 Compressor Losses ..................................... 384
        16.1.1 Profile Losses ................................. 385
        16.1.2 Diffusion Factor ............................... 387
        16.1.3 Generalized Maximum Velocity Ratio for
               Cascade, Stage ................................. 391
        16.1.4 Compressibility Effect ......................... 393
        16.1.5 Shock Losses ................................... 397
        16.1.6 Correlations for Boundary Layer Momentum
               Thickness ...................................... 406
        16.1.7 Influence of Different Parameters on Profile
               Losses ......................................... 407
               16.1.7.1 Mach Number Effect .................... 407
               16.1.7.2 Reynolds Number Effect ................ 408
   16.2 Compressor Design and Off-Design Performance .......... 409
        16.2.1 Stage-by-Stage and Row-by-Row Compression
               Process ........................................ 409
               16.2.1.1 Stage-by-Stage Calculation of
                        Compression Process ................... 409
               16.2.1.2 Row-by-Row Adiabatic Compression ...... 411
               16.2.1.3 Off-Design Efficiency Calculation ..... 415
   16.3 Generation of Steady State Performance Map ............ 418
        16.3.1 Inception of Rotating Stall .................... 420
        16.3.2 Degeneration of Rotating Stall into Surge ...... 422
   16.4 Compressor Modeling Levels ............................ 423
        16.4.1 Module Level 1: Using Performance Maps ......... 424
               16.4.1.1 Quasi-dynamic Modeling Using
                        Performance Maps ...................... 426
               16.4.1.2 Simulation Example .................... 427
        16.4.2 Module Level 2: Row-by-Row Adiabatic
               Compression .................................... 429
               16.4.2.1 Active Surge Prevention by Adjusting
                        the Stator Blades ..................... 430
               16.4.2.2 Simulation Example: Surge and Its
                        Prevention ............................ 431
        16.4.3 Module Level 3: Row-by-Row Diabatic
               Compression .................................... 436
               16.4.3.1 Description of Diabatic Compressor
                        Module ................................ 437
               16.4.3.2 Heat Transfer Closure Equations ....... 439
   References ................................................. 442
17 Turbine Aerodynamic Design, Performance .................... 445
   17.1 Stage-by-Stage and Row-by-Row Design .................. 447
        17.1.1 Stage-by-Stage Calculation of Expansion
               Process ........................................ 448
        17.1.2 Row-by-Row Adiabatic Expansion ................. 449
        17.1.3 Off-Design Efficiency Calculation .............. 454
        17.1.4 Behavior under Extreme Low Mass Flows .......... 456
        17.1.5 Example: Steady Design and Off-Design
               Behavior ....................................... 459
   17.2 Off-Design Calculation Using Global Turbine
        Characteristics ....................................... 461
   17.3 Modeling of Turbine Module for Dynamic Performance
        Simulation ............................................ 462
        17.3.1 Module Level 1: Using Turbine Performance
               Characteristics ................................ 463
        17.3.2 Module Level 2: Row-by-Row Expansion
               Calculation .................................... 464
        17.3.3 Module Level 3: Row-by-Row Diabatic
               Expansion ...................................... 465
               17.3.3.1 Description of Diabatic Turbine
                        Module, First Method .................. 467
               17.3.3.2 Description of Module, Second
                        Method ................................ 469
               17.3.3.3 Heat Transfer Closure Equations ....... 471
   References ................................................. 472
18 Gas Turbine Engines, Design and Dynamic Performance ........ 473
   18.1 Gas Turbine Steady Design Operation, Process .......... 475
        18.1.1 Gas Turbine Process ............................ 477
        18.1.2 Improvement of Gas Turbine Thermal
               Efficiency ..................................... 483
   18.2 Non-Linear Gas Turbine Dynamic Simulation ............. 485
        18.2.1 State of Dynamic Simulation, Background ........ 486
   18.3 Engine Components, Modular Concept, Module
        Identification ........................................ 487
   18.4 Levels of Gas Turbine Engine Simulations, Cross
        Coupling .............................................. 493
   18.5 Non-Linear Dynamic Simulation Case Studies ............ 494
        18.5.1 Case Study 1: Compressed Air Energy Storage
               Gas Turbine .................................... 495
               18.5.1.1 Simulation of Emergency Shutdown ...... 497
        18.5.2 Case Study 2: Power Generation Gas Turbine
               Engine ......................................... 499
        18.5.3 Case Study 3: Simulation of a Multi-Spool Gas
               Turbine ........................................ 504
   18.6 A Byproduct of Dynamic Simulation: Detailed
        Calculation ........................................... 507
   18.7 Summary Part III, Further Development ................. 510
   References ................................................. 511

IV Turbomachinery CFD-Essentials

19 Basic Physics of Laminar-Turbulent Transition .............. 515
   19.1 Transition Basics: Stability of Laminar Flow .......... 515
   19.2 Laminar-Turbulent Transition, Fundamentals ............ 515
   19.3 Physics of an Intermittent Flow ....................... 518
        19.3.1 Intermittent Behavior of Statistically Steady
               Flows .......................................... 519
        19.3.2 Turbulent/Non-turbulent Decisions .............. 520
        19.3.3 Intermittency Modeling for Flat Plate
               Boundary Layer ................................. 524
   19.4 Physics of Unsteady Boundary Layer Transition ......... 525
        19.4.1 Experimental Simulation of the Unsteady
               Boundary Layer ................................. 527
        19.4.2 Ensemble Averaging High Frequency Data ......... 530
        19.4.3 Intermittency Modeling for Periodic Unsteady
               Flow ........................................... 533
   19.5 Implementation of Intermittency into Navier Stokes
        Equations ............................................. 536
        19.5.1 Reynolds-Averaged Navier-Stokes Equations
               (RANS) ......................................... 536
        19.5.2 Conditioning RANS for Intermittency
               Implementation ................................. 540
   References ................................................. 542
20 Turbulent Flow and Modeling in Turbomachinery .............. 545
   20.1 Fundamentals of Turbulent Flows ....................... 545
        20.1.1 Type of Turbulence ............................. 547
        20.1.2 Correlations, Length and Time Scales ........... 548
        20.1.3 Spectral Representation of Turbulent Flows ..... 555
        20.1.4 Spectral Tensor, Energy Spectral Function ...... 558
   20.2 Averaging Fundamental Equations of Turbulent Flow ..... 560
        20.2.1 Averaging Conservation Equations ............... 561
               20.2.1.1 Averaging the Continuity Equation ..... 561
               20.2.1.2 Averaging the Navier-Stokes
                        Equation .............................. 561
               20.2.1.3 Averaging the Mechanical Energy
                        Equation .............................. 562
               20.2.1.4 Averaging the Thermal Energy
                        Equation .............................. 563
               20.2.1.5 Averaging the Total Enthalpy
                        Equation .............................. 565
               20.2.1.6 Quantities Resulting from Averaging
                        to Be Modeled ......................... 568
        20.2.2 Equation of Turbulence Kinetic Energy .......... 570
        20.2.3 Equation of Dissipation of Kinetic Energy ...... 576
   20.3 Turbulence Modeling ................................... 577
        20.3.1 Algebraic Model: Prandtl Mixing Length
               Hypothesis ..................................... 578
        20.3.2 Algebraic Model: Cebeci-Smith Model ............ 584
        20.3.3 Baldwin-Lomax Algebraic Model .................. 585
        20.3.4 One- Equation Model by Prandtl ................. 586
        20.3.5 Two-Equation Models ............................ 587
               20.3.5.1  Two-Equation k-ε Model ............... 587
               20.3.5.2  Two-Equation k-ω-Model ............... 589
               20.3.5.3  Two-Equation k-ω-SST-Model ........... 590
   20.4 Grid Turbulence ....................................... 592
   20.5 Examples of Two-Equation Models ....................... 594
        20.5.1 Internal Flow, Sudden Expansion ................ 594
        20.5.2 Internal Flow, Turbine Cascade ................. 595
        20.5.3 External Flow, Lift-Drag Polar Diagram ......... 596
        20.5.4 Case Study: Flow Simulation in a Rotating
               Turbine ........................................ 597
        20.5.5 Results, Discussion ............................ 605
        20.5.6 Rotating Turbine RANS, URANS-Shortcomings,
               Discussion ..................................... 614
   References ................................................. 615
21 Introduction into Boundary Layer Theory .................... 619
   21.1 Boundary Layer Approximations ......................... 620
   21.2 Exact Solutions of Laminar Boundary Layer Equations ... 623
        21.2.1 Zero Pressure Gradient Boundary Layer .......... 624
        21.2.2 Non-zero Pressure Gradient Boundary Layer ...... 626
        21.2.3 Polhausen Approximate Solution ................. 629
   21.3 Boundary Layer Theory, Integral Method ................ 631
        21.3.1 Boundary Layer Thicknesses ..................... 631
        21.3.2 Boundary Layer Integral Equation ............... 633
   21.4 Turbulent Boundary Layers ............................. 637
        21.4.1 Universal Wall Functions ....................... 640
        21.4.2 Velocity Defect Function ....................... 643
   21.5 Boundary Layer, Differential Treatment ................ 648
        21.5.1 Solution of Boundary Layer Equations ........... 653
   21.6 Measurement of Boundary Flow, Basic Techniques ........ 653
        21.6.1 Experimental Techniques ........................ 653
               21.6.1.1 HWA Operation Modes, Calibration ...... 654
               21.6.1.2 HWA Averaging, Sampling Data .......... 655
   21.7 Examples: Calculations, Experiments ................... 657
        21.7.1 Steady State Velocity Calculations ............. 657
               21.7.1.1 Experimental Verification ............. 659
               21.7.1.2 Heat Transfer Calculation,
                        Experiment ............................ 660
        21.7.2 Periodic Unsteady Inlet Flow Condition ......... 661
               21.7.2.1 Experimental Verification ............. 664
               21.7.2.2 Heat Transfer Calculation,
                        Experiment ............................ 666
        21.7.3 Application of K-ca Model to Boundary Layer .... 667
   21.8 Parameters Affecting Boundary Layer ................... 667
        21.8.1 Parameter Variations, General Remarks .......... 668
        21.8.2 Effect of Periodic Unsteady Flow ............... 672
   References ................................................. 680

A  Vector and Tensor Analysis in Turbomachinery ............... 685
   A.1  Tensors in Three-Dimensional Euclidean Space .......... 685
        A.1.1  Index Notation ................................. 686
   A.2  Vector Operations: Scalar, Vector and Tensor
        Products .............................................. 687
        A.2.1  Scalar Product ................................. 687
        A.2.2  Vector or Cross Product ........................ 688
        A.2.3  Tensor Product ................................. 688
   A.3  Contraction of Tensors ................................ 689
   A.4  Differential Operators in Fluid Mechanics ............. 690
        A.4.1  Substantial Derivatives ........................ 690
        A.4.2  Differential Operator fig.2 ........................ 691
   A.5  Operator fig.2 Applied to Different Functions ............. 693
        A.5.1  Scalar Product of fig.2 and V ..................... 694
        A.5.2  Vector Product fig.2 × V ........................... 695
        A.5.3  Tensor Product of fig.2 and V ...................... 695
        A.5.4  Scalar Product of fig.2 and a Second Order
               Tensor ......................................... 696
        A.5.5  Eigenvalue and Eigenvector of a Second Order
               Tensor ......................................... 700
   References ................................................. 702
В  Tensors in Orthogonal Curvilinear Coordinate Systems ....... 703
   B.l  Change of Coordinate System ........................... 703
   B.2  Co- and Contravariant Base Vectors, Metric
        Coefficients .......................................... 703
   B.3  Physical Components of a Vector ....................... 706
   B.4  Derivatives of the Base Vectors, Christoffel
        Symbols ............................................... 707
   B.5  Spatial Derivatives in Curvilinear Coordinate
        System ................................................ 708
        B.5.1  Application of V to Zeroth Order Tensor
               Functions ...................................... 708
        B.5.2  Application of V to First and Second Order
               Tensor Functions ............................... 709
   B.6  Application Example 1: Inviscid Incompressible Flow
        Motion ................................................ 710
        B.6.1  Equation of Motion in Curvilinear Coordinate
               Systems ........................................ 711
        B.6.2  Special Case: Cylindrical Coordinate System .... 712
        B.6.3  Base Vectors, Metric Coefficients .............. 712
        B.6.4  Christoffel Symbols ............................ 713
        B.6.5  Introduction of Physical Components ............ 714
   B.7  Application Example 2: Viscous Flow Motion ............ 715
        B.7.1  Equation of Motion in Curvilinear Coordinate
               Systems ........................................ 715
        B.7.2  Special Case: Cylindrical Coordinate System .... 716
   References ................................................. 716

Index ......................................................... 717


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:24:26 2019. Размер: 35,594 bytes.
Посещение N 1939 c 11.12.2012