Annamalai K. Advanced thermodynamics engineering (Boca Raton, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAnnamalai K. Advanced thermodynamics engineering / K.Annamalai, I.K.Puri, M.A.Jog. - 2nd ed. - Boca Raton; London: CRC; Taylor & Francis, 2011. - xlvi, 1096 p.: ill. - (CRC series in computational mechanics and applied analysis). - Bibliogr.: p.1061-1085. - Ind.: p.1086-1096. - ISBN 978-1-4398-0572-5
 

Оглавление / Contents
 
List of Tables in Appendix A .................................. xxv
List of Figures in Appendix В ................................ xxix
Preface to Second Edition .................................... xxxi
Nomenclature ................................................. xxxv
Thermolab Excel®-Based Software for Thermodynamic
Properties, Flame Temperatures of Fuels, Conversion Units,
Math Functions and Other Properties ........................... xli
Four Important Equations in Analysis of Thermal Systems ....... xlv
1  Introduction ................................................. 1
   Objectives ................................................... 1
   1.1  Importance, Significance and Limitations ................ 1
   1.2  Review of Thermodynamics ................................ 2
        1.2.1  System and Boundary .............................. 2
        1.2.2  Simple System .................................... 2
        1.2.3  Constraints and Restraints ....................... 4
        1.2.4  Composite System ................................. 4
        1.2.5  Phase ............................................ 4
        1.2.6  Homogeneous ...................................... 4
        1.2.7  Pure Substance ................................... 5
        1.2.8  Amount of Matter and Avogadro Number ............. 5
        1.2.9  Mixture .......................................... 6
        1.2.10 Property ......................................... 7
        1.2.11 State ............................................ 8
        1.2.12 Equation of State ............................... 10
        1.2.13 Standard Temperature and Pressure ............... 10
        1.2.14 Partial Pressure ................................ 11
        1.2.15 Process ......................................... 11
        1.2.16 Vapor-Liquid Phase Equilibrium .................. 11
   1.3  Mathematical Background ................................ 14
        1.3.1  Explicit and Implicit Functions and Total
               Differentiation ................................. 14
        1.3.2  Exact (Perfect) and Inexact (Imperfect)
               Differentials ................................... 16
        1.3.3  Relevance to Thermodynamics ..................... 20
        1.3.4  Homogeneous Functions ........................... 22
        1.3.5  LaGrange Multipliers ............................ 26
        1.3.6  Composite Function .............................. 28
   1.4  Overview of Microscopic/Nanothermodynamics ............. 29
        1.4.1  Matter .......................................... 29
        1.4.2  Intermolecular Forces and Potential Energy ...... 29
        1.4.3  Collision Number, Mean Free Path, and
               Molecular Velocity .............................. 33
        1.4.4  Thermal and Internal Energy ..................... 37
        1.4.5  Temperature ..................................... 39
        1.4.6  Pressure ........................................ 40
        1.4.7  Gas, Liquid, and Solid .......................... 42
        1.4.8  Work ............................................ 45
        1.4.9  Heat Transfer and Thermal Equilibrium ........... 46
        1.4.10 Chemical Potential .............................. 46
        1.4.11 Boiling/Phase Equilibrium ....................... 49
        1.4.12 Entropy ......................................... 51
        1.4.13 Properties in Mixtures: Partial Molal Property .. 57
   1.5  Summary ................................................ 57
   1.6  Appendix: Stokes and Gauss Theorems .................... 57
        1.6.1  Stokes Theorem .................................. 58
        1.6.2  Gauss-Ostrogradskii Divergence Theorem .......... 58
        1.6.3  The Leibnitz Formula ............................ 59
2  First Law of Thermodynamics ................................. 61
   Objectives .................................................. 61
   2.1  Introduction ........................................... 61
   2.2  Zeroth Law ............................................. 62
   2.3  First Law for a Closed System .......................... 62
        2.3.1  Energy Conservation Equation in Various Forms ... 63
   2.4  Quasi-Equilibrium (QE) and Nonquasi-Equilibrium (NQE)
        Processes .............................................. 70
        2.4.1  Quasi-Equilibrium and Nonequilibrium Heat
               Transfer ........................................ 70
        2.4.2  Quasi-Equilibrium and Nonequilibrium Work
               Transfer ........................................ 71
   2.5  Enthalpy and First Law ................................. 79
        2.5.1  First Law in Enthalpy Form ...................... 79
        2.5.2  Reference Conditions for Enthalpy and Internal
               Energy .......................................... 80
        2.5.3  Specific Heats at Constant Pressure and Volume .. 82
   2.6  Adiabatic Reversible Process for Ideal Gas with
        Constant Specific Heats ................................ 85
   2.7  First Law for an Open System ........................... 87
        2.7.1  Conservation of Mass ............................ 88
        2.7.2  Conservation of Energy for a Simple Open
               System .......................................... 91
        2.7.3  Conservation of Energy for Complex Open
               System .......................................... 98
   2.8  Applications of First Law for an Open System ........... 99
        2.8.1  Heating of a Residence in Winter ................ 99
        2.8.2  Charging of Gas into a Cylinder ................ 101
        2.8.3  Discharging Gas from Cylinders ................. 104
        2.8.4  Systems Involving Boundary Work ................ 105
        2.8.5  Charging Cavern with CO2 Work Input ............ 108
   2.9  Integral and Differential Forms of Conservation
        Equations ............................................. Ill
        2.9.1  Mass Conservation .............................. Ill
        2.9.2  Energy Conservation ............................ 113
   2.10 Summary ............................................... 115
   2.11 Appendix .............................................. 116
        2.11.1 Conservation Relations for a Deformable
               Control Volume ................................. 116
3  Second Law of Thermodynamics and Entropy ................... 119
   Objectives ................................................. 119
   3.1  Introduction .......................................... 119
   3.2  Thermal and Mechanical Energy Reservoirs .............. 120
   3.3  Heat Engine and Heat Pump ............................. 120
        3.3.1  Heat Engine .................................... 120
        3.3.2  Heat Pump and Refrigeration Cycle .............. 120
        3.3.3  Informal Statements ............................ 122
        3.3.4  Formal Statement ............................... 123
        3.3.5  Perpetual Motion Machines ...................... 123
   3.4  Consequences of the Second Law ........................ 124
        3.4.1  Reversible and Irreversible Processes .......... 124
        3.4.2  Carnot's Corollaries ........................... 124
        3.4.3  External and Internal Reversibility ............ 131
   3.5  Entropy ............................................... 131
        3.5.1  Mathematical Definition ........................ 131
        3.5.2  Characteristics of Entropy ..................... 132
        3.5.3  Relation between dS, δQ and T during an
               Irreversible Process ........................... 134
        3.5.4  Caratheodary Axiom II .......................... 137
   3.6  Entropy Balance Equation for a Closed System .......... 137
        3.6.1  Infinitesimal Form ............................. 137
        3.6.2  Integrated Form ................................ 143
        3.6.3  Rate Form ...................................... 143
        3.6.4  Cyclical Form .................................. 143
        3.6.5  Adiabatic Reversible Processes ................. 144
   3.7  Irreversibility ....................................... 144
        3.7.1  Irreversibility and Entropy of an Isolated
               System ......................................... 144
        3.7.2  Degradation and Quality of Energy .............. 146
   3.8  Entropy Measurements and Evaluation ................... 148
        3.8.1  The "ds" Relation for any Substance ............ 148
        3.8.2  Entropy Change of Ideal Gases .................. 151
        3.8.3  Entropy Incompressible Liquids ................. 155
        3.8.4  Entropy Solids ................................. 156
        3.8.5  Entropy during Phase Change .................... 157
        3.8.6  Entropy of a Mixture of Ideal Gases ............ 159
   3.9  Local and Global Equilibrium .......................... 162
   3.10 Entropy: Energy Relation for Single Component
        Incompressible Fluids ................................. 163
   3.11 Third Law ............................................. 166
   3.12 Entropy Balance Equation for an Open System ........... 168
        3.12.1 General Expression ............................. 168
        3.12.2 Evaluation of Entropy for a Control Volume ..... 173
   3.13 Internally Reversible Work for an Open System ......... 178
   3.14 Irreversible Processes and Efficiencies ............... 180
   3.15 Cyclic Processes ...................................... 181
        3.15.1 Vapor Power Cycle .............................. 181
        3.15.2 Refrigeration Cycles ........................... 182
        3.15.3 Cooling Mode ................................... 183
        3.15.4 Heating Mode ................................... 183
        3.15.5 Coefficient of Performance COP ................. 183
        3.15.6 Carnot COP ..................................... 183
        3.15.7 HP/Ton of Refrigeration ........................ 183
   3.16 Entropy Balance in Integral and Differential Form ..... 183
        3.16.1 Integral Form .................................. 184
        3.16.2 Differential Form .............................. 184
        3.16.3 Application to Open Systems .................... 185
   3.17 Maximum Entropy and Minimum Energy .................... 187
        3.17.1 Entropy Maximum (for Specified U, V, m) ........ 189
        3.17.2 Internal Energy Minimum (for Specified S, V,
               m) ............................................. 196
        3.17.3 Enthalpy Minimum (for Specified S, P, m) ....... 201
        3.17.4 Helmholtz Free Energy Minimum (for Specified
               T, V, m) ....................................... 204
        3.17.5 Gibbs Free Energy Minimum (for Specified T,
               P, m) .......................................... 204
   3.18 Generalized Derivation of Equilibrium for a Single
        Phase ................................................. 209
        3.18.1 Relation for Entropy Generation Rate ........... 209
        3.18.2 Heat Transfer .................................. 212
        3.18.3 Work Transfer .................................. 212
        3.18.4 Species Transfer ............................... 212
   3.19 Multiphase Multicomponent Equilibrium ................. 213
   3.20 Summary ............................................... 214
   3.21 Appendix .............................................. 214
        3.21.1 Proof for Additive Nature of Entropy ........... 214
        3.21.2 Relative Pressures and Volumes ................. 215
        3.21.3 LaGrange Multiplier Method for Equilibrium ..... 216
4  Objectives ................................................. 219
   4.1  Introduction .......................................... 219
   4.2  Optimum Work and Irreversibility in a Closed System ... 220
        4.2.1  Internally Reversible Process .................. 223
        4.2.2  Useful or External Work ........................ 223
        4.2.3  Internally Irreversible Process with No
               External Irreversibility ....................... 224
        4.2.4  Irreversibility or Gouy-Stodola Theorem ........ 224
        4.2.5  Nonuniform Boundary Temperature in a System .... 224
   4.3  Availability or Exergy Analyses for a Closed System ... 225
        4.3.1  Absolute and Relative Availability (Exergy)
               under Interactions with Ambient ................ 225
        4.3.2  Irreversibility or Lost Work ................... 228
   4.4  Generalized Availability Analysis ..................... 235
        4.4.1  Steam Availabilities Actual Work and Optimum
               Work ........................................... 235
        4.4.2  Lost Work Rate, Irreversibility Rate,
               Availability Loss .............................. 237
        4.4.3  Availability Balance Equation in Terms of
               Actual Work .................................... 238
        4.4.4  Irreversibility Due to Heat Transfer ........... 238
        4.4.5  Multiple Inlets and Exits ...................... 239
        4.4.6  Multiple Components ............................ 239
        4.4.7  Applications of the Availability Balance
               Equation ....................................... 240
        4.4.8  Gibbs Function ................................. 248
        4.4.9  Closed System (Nonflow Systems) and Closed
               System Availabilities .......................... 248
   4.5  Availability/Exergetic Efficiency ..................... 253
        4.5.1  Heat Engines ................................... 253
        4.5.2  Heat Pumps and Refrigerators ................... 258
        4.5.3  Work-Producing and Consumption Devices ......... 261
        4.5.4  Flow Processes or Heat Exchangers .............. 265
        4.5.5  Availability/Metabolic Efficiency for
               Biological Systems ............................. 266
        4.5.6  Differences among Actual, Isentropic and
               Optimum Processes in a Work Device ............. 267
   4.6  Chemical Availability ................................. 267
        4.6.1  Open System .................................... 268
        4.6.2  Closed System .................................. 277
   4.7  Integral and Differential Forms of Availability
        Balance ............................................... 279
        4.7.1  Integral Form .................................. 279
        4.7.2  Differential Form .............................. 279
        4.7.3  S ome Applications ............................. 280
   4.8  Summary ............................................... 283
5  Postulatory (Gibbsian) Thermodynamics ...................... 285
   Objectives ................................................. 285
   5.1  Introduction .......................................... 285
   5.2  Classical Rationale for Postulatory Approach .......... 285
   5.3  Simple Compressible Substance ......................... 288
   5.4  Legendre Transform .................................... 288
        5.4.1  Simple Legendre Transform ...................... 288
        5.4.2  Relevance to Thermodynamics .................... 290
        5.4.3  Generalized Legendre Transform ................. 291
   5.5  Application of Legendre Transform ..................... 295
   5.6  Work Modes and Generalized State Relation ............. 296
        5.6.1  Electrical Work ................................ 296
        5.6.2  Elastic Work ................................... 296
        5.6.3  Surface Tension Effects ........................ 296
        5.6.4  Torsional Work ................................. 298
        5.6.5  Work Involving Gravitational Field ............. 298
        5.6.6  Generalized State Relation ..................... 299
   5.7  Thermodynamic Postulates for Simple Systems ........... 299
        5.7.1  Postulate I .................................... 299
        5.7.2  Postulate II ................................... 300
        5.7.3  Posmlate III ................................... 300
        5.7.4  Postulate IV ................................... 300
   5.8  Fundamental Equations in Thermodynamics ............... 300
        5.8.1  Entropy ........................................ 300
        5.8.2  Energy ......................................... 301
        5.8.3  Intensive and Extensive Properties ............. 302
   5.9  Summary ............................................... 304
6  State Relationships for Real Gases and Liquids ............. 305
   Objectives ................................................. 305
   6.1  Introduction .......................................... 305
   6.2  Equations of State .................................... 306
   6.3  Virial Equations ...................................... 307
        6.3.1  Exact Virial Equation .......................... 308
        6.3.2  Approximate Virial Equation .................... 308
   6.4  Clausius-I Equation of State .......................... 309
   6.5  VW Equation of State .................................. 311
   6.6  Redlich-Kwong Equation of State ....................... 317
   6.7  Other Two-Parameter Equations of State ................ 318
   6.8  Compressibility Charts (Principle of Corresponding
        States) ............................................... 323
   6.9  Boyle Temperature and Boyle Curves .................... 327
        6.9.1  Boyle Temperature .............................. 327
        6.9.2  Boyle Curve .................................... 328
   6.10 Deviation Function .................................... 328
   6.11 Three Parameter Equations of State .................... 330
        6.11.1 Critical Compressibility Factor (ZJ-Based
               Equations ...................................... 331
        6.11.2 Pitzer Factor .................................. 331
        6.11.3 Other Three Parameter Equations of State ....... 333
   6.12 Generalized Equation of State ......................... 334
   6.13 Empirical Equations of State .......................... 336
        6.13.1 Benedict-Webb-Rubin Equation ................... 336
        6.13.2 Beatie-Bridgemann (BB) Equation of State ....... 336
        6.13.3 Modified BWR Equation .......................... 336
        6.13.4 Lee-Kesler Equation of State ................... 336
        6.13.5 Martin-Hou ..................................... 337
   6.14 State Equations for Liquids/Solids .................... 337
        6.14.1 Generalized State Equation ..................... 337
        6.14.2 Murnaghan Equation of State .................... 340
        6.14.3 Racket Equation for Saturated Liquids .......... 340
        6.14.4 Relation for Densities of Saturated Liquids
               and Vapors ..................................... 341
        6.14.5 Lyderson Charts (for Liquids) .................. 341
        6.14.6 Incompressible Approximation ................... 341
   6.15 Summary ............................................... 342
   6.16 Appendix .............................................. 342
        6.16.1  Cubic Equation ................................ 342
        6.16.2  Another Explanation for the Attractive Force .. 343
        6.16.3  Critical Temperature and Attraction Force
                Constant ...................................... 343
7  Thermodynamic Properties of Pure Fluids .................... 345
   Objectives ................................................. 345
   7.1  Introduction .......................................... 345
   7.2  Ideal Gas Properties .................................. 346
   7.3  James Clark Maxwell, 1831-1879 Relations .............. 347
        7.3.1  First Maxwell Relation ......................... 347
        7.3.2  Second Maxwell Relation ........................ 348
        7.3.3  Third Maxwell Relation ......................... 349
        7.3.4  Fourth Maxwell Relation ........................ 353
        7.3.5  Summary of Relations ........................... 356
   7.4  Generalized Relations ................................. 357
        7.4.1  Entropy (ds) Relation .......................... 357
        7.4.2  Internal Energy (du) Relation .................. 367
        7.4.3  Enthalpy (dh) Relation ......................... 370
        7.4.4  Relation for (cp-cv) ........................... 372
        7.4.5  Internal Energy and Entropy of Photons ......... 373
   7.5  Evaluation of Thermodynamic Properties ................ 374
        7.5.1  Helmholtz Function ............................. 374
        7.5.2  Entropy ........................................ 378
        7.5.3  Pressure ....................................... 381
        7.5.4  Internal Energy ................................ 381
        7.5.5  Enthalpy ....................................... 384
        7.5.6  Gibbs Free Energy or Chemical Potential ........ 389
        7.5.7  Fugacity Coefficient ........................... 392
   7.6  Pitzer Effect ......................................... 392
   7.7  Kesler Equation of State (KES) and Kesler Tables ...... 394
   7.8  Fugacity .............................................. 395
        7.8.1  Fugacity Coefficient ........................... 395
        7.8.2  Physical Meaning ............................... 397
        7.8.3  Phase Equilibrium .............................. 398
        7.8.4  Subcooled and Superheated Liquid ............... 398
        7.8.5  Subcooled Vapor ................................ 399
   7.9  Experiments to Measure (u0 - u) ....................... 401
   7.10 Vapor/Liquid Equilibrium Curve ........................ 403
        7.10.1 Minimization of Potentials ..................... 403
        7.10.2 Real Gas Equations ............................. 407
        7.10.3 Heat of Vaporization ........................... 411
        7.10.4 Vapor Pressure and the Clapeyron Equation ...... 413
        7.10.5 Empirical Relations ............................ 417
        7.10.6 Saturation Relations with Surface Tension
               Effects ........................................ 419
        7.10.7 Pitzer Factor from Saturation Relations ........ 423
   7.11 Throttling Processes .................................. 423
        7.11.1 Joule-Thomson Coefficient ...................... 423
        7.11.2 Isentropic Cooling ............................. 425
        7.11.3 Temperature Change during Throttling ........... 427
        7.11.4 Enthalpy Correction Charts and Joule-Thomson
               Coefficient .................................... 429
        7.11.5 Inversion Curves ............................... 430
        7.11.6 Throttling of Saturated or Subcooled Liquids ... 433
        7.11.7 Throttling of Vapors ........................... 434
        7.11.8 Throttling in Closed Systems ................... 434
   7.12 Development of Thermodynamic Tables ................... 438
        7.12.1 Procedure for Determining Thermodynamic
               Properties ..................................... 438
        7.12.2 Entropy ........................................ 442
   7.13 Summary ............................................... 443
8  Thermodynamic Properties of Mixtures ....................... 445
   Objectives ................................................. 445
   8.1  Introduction .......................................... 445
   8.2  Generalized Relations and Partial and Mixture Molal
        Properties ............................................ 446
        8.2.1  Mixture Composition ............................ 446
        8.2.2  Generalized Relations .......................... 448
        8.2.3  Partial Molal Property and Characteristics ..... 448
   8.3  Useful Relations for Partial Molal Properties ......... 455
        8.3.1  Binary Mixture ................................. 455
        8.3.2  Multicomponent Mixture ......................... 456
        8.3.3  Relations between Partial Molal and Pure
               Properties ..................................... 461
   8.4  Ideal Gas Mixture ..................................... 463
        8.4.1  Volume ......................................... 463
        8.4.2  Pressure ....................................... 464
        8.4.3  Internal Energy ................................ 465
        8.4.4  Enthalpy ....................................... 465
        8.4.5  Entropy ........................................ 466
        8.4.6  Gibbs Free Energy .............................. 467
   8.5  Ideal Solution ........................................ 467
        8.5.1  Volume ......................................... 467
        8.5.2  Internal Energy and Enthalpy ................... 467
        8.5.3  Gibbs Function ................................. 467
        8.5.4  Entropy ........................................ 468
   8.6  Fugacity .............................................. 469
        8.6.1  Fugacity and Activity .......................... 469
        8.6.2  Approximate Solutions for fig.1 ................... 470
   8.7  Excess Property ....................................... 480
   8.8  Osmotic Pressure ...................................... 484
        8.8.1  Real Solution .................................. 484
        8.8.2  Ideal Solution ................................. 486
   8.9  Molal Properties Using the Equations of State ......... 489
        8.9.1  Mixing Rules for Equations of State ............ 489
        8.9.2  Partial Molal Properties Using Mixture State
               Equations ...................................... 496
   8.10 Summary ............................................... 501
9  Phase Equilibrium for a Mixture ............................ 503
   Objectives ................................................. 503
   9.1  Introduction .......................................... 503
   9.2  Miscible, Immiscible, and Partially Miscible Mixture .. 504
   9.3  Phase Equilibrium ..................................... 504
        9.3.1  Two-Phase System ............................... 504
   9.4  Simplified Criteria for Phase Equilibrium ............. 508
        9.4.1  General Criteria for Any Solution .............. 508
        9.4.2  Ideal Solution and Raoult's Law ................ 509
   9.5  Pressure and Temperature Diagrams ..................... 515
        9.5.1  Completely Miscible Mixtures ................... 515
        9.5.2  Immiscible Mixture ............................. 529
        9.5.3  Partially Miscible Liquids ..................... 531
   9.6  Dissolved Gases in Liquids ............................ 533
        9.6.1  Single Component Gas ........................... 534
        9.6.2  Mixture of Gases and Liquids ................... 535
        9.6.3  Approximate Solution-Henry's Law ............... 536
   9.7  Deviations from Raoult's Law .......................... 538
        9.7.1  Evaluation of the Activity Coefficient ......... 539
   9.8  Summary ............................................... 540
   9.9  Appendix .............................................. 540
        9.9.1  Phase Rule for Single Component ................ 540
        9.9.2  General Phase Rule for Multicomponent Fluids ... 541
        9.9.3  Raoult's Law for the Vapor Phase of a Real
               Gas ............................................ 543
10 Stability .................................................. 545
   Objectives ................................................. 545
   10.1 Introduction .......................................... 545
   10.2 Criteria for an Isolated System ....................... 547
   10.3 Mathematical Criterion for Stability .................. 551
        10.3.1 Perturbation of Volume ......................... 551
        10.3.2 Perturbation of Energy ......................... 556
        10.3.3 Perturbation with Energy and Volume ............ 557
        10.3.4 System with Specified Values of S, V, and m .... 563
        10.3.5 Perturbation in Entropy at Specified Volumes ... 564
        10.3.6 Perturbation in Entropy and Volume ............. 565
        10.3.7 System with Specified Values of S, P, and m .... 566
        10.3.8 System with Specified Values of T, V, and m .... 567
        10.3.9 System with Specified Values of T, P, and m .... 569
   10.4 Application to Boiling and Condensation ............... 572
        10.4.1 Constant T and P ............................... 573
        10.4.2 Constant Temperature and Volume ................ 575
        10.4.3 Specified Values of S, P, and m ................ 578
        10.4.4 Specified Values of S (or U), V, and m ......... 578
   10.5 Entropy Generation during Irreversible
        Transformation ........................................ 579
   10.6 Spinodal Curves ....................................... 579
        10.6.1 Single Component ............................... 579
        10.6.2 Internal Energy along Spinodal Curve ........... 584
        10.6.3 Multicomponent Mixtures ........................ 584
   10.7 Determination of Vapor Bubble and Drop Sizes .......... 586
   10.8 Summary ............................................... 587
11 Chemically Reacting Systems ................................ 589
   Objectives ................................................. 589
   11.1 Introduction .......................................... 589
   11.2 Chemical Reactions and Combustion ..................... 590
        11.2.1 Stoichiometric or Theoretical Reaction ......... 590
        11.2.2 Reaction with Excess Air (Lean Combustion) ..... 592
        11.2.3 Reaction with Excess Fuel (Rich Combustion) .... 592
        11.2.4 Equivalence Ratio, Stoichiometric Ratio ........ 593
        11.2.5 Gas Analysis ................................... 594
   11.3 Thermochemistry ....................................... 596
        11.3.1 Enthalpy of Formation (Chemical Enthalpy) ...... 596
        11.3.2 Thermal or Sensible Enthalpy ................... 598
        11.3.3 Total Enthalpy ................................. 599
        11.3.4 Enthalpy of Reaction ........................... 599
        11.3.5 Entropy, Gibbs Function, and Gibbs Function
               of Formation ................................... 601
   11.4 First Law Analyses for Chemically Reacting Systems .... 604
        11.4.1 First Law ...................................... 604
        11.4.2 Adiabatic Flame Temperature .................... 608
   11.5 Combustion Analyses in the Case of Nonideal
        Behavior .............................................. 611
        11.5.1 Pure Component ................................. 612
        11.5.2 Mixture ........................................ 612
   11.6 Second Law Analysis of Chemically Reacting Systems .... 614
        11.6.1 Entropy Generated during an Adiabatic
               Chemical Reaction .............................. 614
        11.6.2 Entropy Generated during an Isothermal
               Chemical Reaction .............................. 617
   11.7 Mass Conservation and Mole Balance Equations .......... 618
        11.7.1 Nonsteady System ............................... 618
        11.7.2 Steady State System ............................ 619
   11.8 Overview on Energy Consumption and Combustion ......... 621
   11.9 Summary ............................................... 621
12 Reaction Direction and Chemical Equilibrium ................ 623
   Objectives ................................................. 623
   12.1 Introduction .......................................... 623
   12.2 Reaction Direction and Chemical Equilibrium ........... 624
        12.2.1 Direction of Heat Transfer ..................... 624
        12.2.2 Direction of Reaction .......................... 624
        12.2.3 Evaluation of Properties during an
               Irreversible Chemical Reaction ................. 626
   12.3 Criteria for Direction of Reaction for Fixed-Mass
        System ................................................ 628
        12.3.1 General Criteria ............................... 628
        12.3.2 Criteria in Terms of Chemical Force Potential
               and Affinity(Af) for Single Reaction ........... 630
        12.3.3 Criteria for Multiple Reactions ................ 639
        12.3.4 An Approximate Criterion for Direction of
               Reactions ...................................... 640
        12.3.5 Evaluation of ΔG0 in Terms of Elementary
               Reactions ...................................... 642
   12.4 Generalized Chemical Equilibrium Relations ............ 642
        12.4.1 Generalized Relation for the Chemical
               Potential for any Substance .................... 642
        12.4.2 Nonideal Mixtures and Solutions ................ 643
        12.4.3 Reactions Involving Ideal Mixtures of Liquids
               and Solids ..................................... 645
        12.4.4 Ideal Mixture of Real Gases .................... 646
        12.4.5 Ideal Gases .................................... 646
        12.4.6 Gas, Liquid, and Solid Mixtures ................ 652
   12.5 Van'tHoffEquation ..................................... 657
        12.5.1 Effect of Temperature on K0(T) ................. 657
        12.5.2 Effect of Pressure ............................. 661
   12.6 Equilibrium for Multiple Reactions .................... 664
   12.7 Adiabatic Flame Temperature with Chemical
        Equilibrium ........................................... 665
   12.8 Gibbs Minimization Method ............................. 665
        12.8.1 General Criteria for Equilibrium ............... 665
        12.8.2 Multiple Components ............................ 668
   12.9 Summary ............................................... 672
   12.10 Appendix: Equilibrium Constant for any Reaction in
        Terms of Equilibrium Constants of Elements ............ 672
13 Availability Analysis for Reacting Systems ................. 673
   Objectives ................................................. 673
   13.1 Introduction .......................................... 673
   13.2 Entropy Generation through Chemical Reactions ......... 674
   13.3 Availability .......................................... 675
        13.3.1 General Availability Balance Equation for
               Combustion ..................................... 675
        13.3.2 Availability Balance Equation for Steady-
               State Nonreservoir Open Combustion Systems ..... 677
        13.3.3 Availability Balance Equation for Closed
               Combustion Systems ............................. 680
        13.3.4 Availability Balance for Adiabatic Systems ..... 683
        13.3.5 Energy and Exergy of a Power Plant ............. 687
        13.3.6 Maximum Work Using Heat Exchanger and
               Adiabatic Combustor ............................ 687
        13.3.7 Availability Balance for Isothermal Reactors ... 692
        13.3.8 Batteries ...................................... 695
   13.4 Fuel Cells ............................................ 695
        13.4.1 Oxidation States and Electrons ................. 696
        13.4.2 H2-O2 Fuel Cell ................................ 696
        13.4.3 Fuel Cells with Other Fuels .................... 700
        13.4.4 Physical Meaning of Irreversibility during
               Adiabatic Combustion ........................... 701
   13.5 Fuel Availability ..................................... 702
        13.5.1 Complete Combustion ............................ 702
        13.5.2 Incomplete Combustion .......................... 705
   13.6 1С Engines and Exergy ................................. 706
   13.7 Summary ............................................... 708
14 Thermodynamics and Biological Systems ...................... 709
   Objectives ................................................. 709
   14.1 Introduction .......................................... 710
   14.2 Biomass Processing .................................... 712
       14.2.1 Digestion, Nutrients, and Product Transfer ...... 712
       14.2.2 Energy Conversion ............................... 714
   14.3 Food and Nutrients .................................... 717
       14.3.1 Thermochemical Properties of Nutrients .......... 717
       14.3.2 Metabolism of Nutrients ......................... 720
       14.3.3 Mixture of CH, F, and P ......................... 723
   14.4 Human Body ............................................ 726
       14.4.1 Formulae ........................................ 726
       14.4.2 Food Consumption and CO2 ........................ 728
   14.5 Metabolism ............................................ 728
       14.5.1 Daily Energy Expenditure (DEE) and Energy for
              Physical Activity ............................... 728
       14.5.2 Efficiencies .................................... 729
       14.5.3 BMR Estimation .................................. 732
       14.5.4 Energy Requirements ............................. 735
   14.6 Thermochemistry of Metabolism in BS ................... 735
       14.6.1 Air:Fuel Ratio .................................. 736
       14.6.2 Nasal Gas Analyses and Fuel Burned .............. 739
       14.6.3 Mass Conservation ............................... 742
       14.6.4 Energy Conservation ............................. 745
       14.6.5 First Law and Relation between Metabolic Rate
              and Size ........................................ 749
   14.7 Heat Transfer Analysis from the Body .................. 752
       14.7.1 Conduction ...................................... 754
       14.7.2 Convection ...................................... 755
       14.7.3 Radiation ....................................... 755
       14.7.4 Respiration ..................................... 756
       14.7.5 Evaporation of Body Water ....................... 756
       14.7.6 Overall Heat Loss ............................... 757
   14.8 Body Temperature and Warm and Cold Blooded Animals .... 759
       14.8.1 Temperature Regulation .......................... 759
       14.8.2 Warm- and Cold-Blooded Animals .................. 761
       14.8.3 Kinetics ........................................ 762
       14.8.4 Fever ........................................... 763
   14.9 Second Law and Entropy Generation in BS ............... 765
       14.9.1 Second Law ...................................... 765
       14.9.2 Entropy Generation .............................. 766
   14.10 Entropy Generation through Chemical Reactions ........ 767
       14.10.1 Entropy Balance Equation ....................... 767
       14.10.2 Availability Balance Equation, Availability
               and Metabolic Efficiencies ..................... 771
   14.11 Life Span and Entropy ................................ 777
       14.11.1 Energy, Entropy, and Biology ................... 778
       14.11.2 Energy Hypothesis or Rate of Living Theory
               (ROL) .......................................... 778
       14.11.3 Entropy Hypothesis ............................. 780
       14.11.4 Phenomenological Analyses ...................... 781
       14.11.5 Entropy Generation and Life Span ............... 785
   14.12 Allometry ............................................ 788
       14.12.1 Introduction ................................... 788
       14.12.2 Allometry Laws ................................. 789
       14.12.3 Allometry Laws: Simplified Analysis for the
               Scaling Laws ................................... 793
   14.13 Summary .............................................. 799

Acknowledgment ................................................ 800
References .................................................... 800
Web Sites ..................................................... 803
Problems ...................................................... 805
A Summary of Chapterwise Formulae ............................. 893
Appendix A: Tables ............................................ 925
Appendix B: Figures .......................................... 1073
Bibliography ................................................. 1081
Index ........................................................ 1087


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:02 2019. Размер: 44,865 bytes.
Посещение N 1337 c 13.08.2013