Binh L.N. Guided wave photonics: fundamentals and applications with MATLAB (Boca Raton, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBinh L.N. Guided wave photonics: fundamentals and applications with MATLAB. - Boca Raton: CRC Press/Taylor & Francis Group, 2012. - xxvi, 762 p.: ill. - Incl. bibl. ref. - Ind.: p.743-762. - ISBN 978-1-4398-2855-7
 

Место хранения: 053 | Институт лазерной физики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... xix
Author ........................................................ xxi
List of Abbreviations and Notations ......................... xxiii

1  Introduction ................................................. 1
   1.1  Historical Overview of Integrated Optics and Photonics .. 1
   1.2  Why Analysis of Optical Guided Wave Devices? ............ 4
   1.3  Principal Objectives .................................... 5
        1.1.4  Chapters Overview ................................ 6
   References ................................................... 8
2  Single-Mode Planar Optical Waveguides ....................... 11
   2.1  Introduction ........................................... 11
   2.2  Formation of Planar Single-Mode Waveguide Problems ..... 13
        2.2.1  Transverse Electric/Transverse Magnetic Wave
               Equation ........................................ 13
               2.2.1.1  Continuity Requirements and Boundary
                        Conditions ............................. 14
               2.2.1.2  Index Profile Construction ............. 14
               2.2.1.3  Normalization and Simplification ....... 15
               2.2.1.4  Modal Parameters of Planar Optical
                        Waveguides ............................. 16
   2.3  Approximate Analytical Methods of Solution ............. 19
        2.3.1  Asymmetrical Waveguides ......................... 19
               2.3.1.1  Variational Techniques ................. 19
               2.3.1.2  Wentzel-Kramers-Brilluoin Method ....... 25
        2.3.2  Symmetrical Waveguides .......................... 31
               2.3.2.1  Wentzel-Kramers-Brilluoin Eigenvalue
                        Equation ............................... 32
               2.3.2.2  Two-Parameter Profile-Moment Method .... 33
               2.3.2.3  New Equivalence Relation for Planar
                        Optical Waveguides ..................... 40
        2.3.3  Concluding Remarks .............................. 49
   2.4  Appendix A: Maxwell Equations in Dielectric Media ...... 49
        2.4.1  Maxwell Equations ............................... 49
        2.4.2  Wave Equation ................................... 50
        2.4.3  Boundary Conditions ............................. 50
        2.4.4  Reciprocity Theorems ............................ 51
               2.4.4.1  General Reciprocity Theorem ............ 51
               2.4.4.2  Conjugate Reciprocity Theorem .......... 51
   2.5  Appendix B: Exact Analysis of Clad-Linear Optical
        Waveguides ............................................. 51
        2.5.1  Asymmetrical Clad-Linear Profile ................ 52
               2.5.1.1  Eigenvalue Equation .................... 52
               2.5.1.2  Mode Cutoff ............................ 53
        2.5.2  Symmetrical Waveguide ........................... 53
               2.5.2.1  Eigenvalue Equation .................... 53
               2.5.2.2  Mode Cutoff ............................ 53
   2.6  Appendix C: Wentzel-Kramers-Brilluoin Method, Turning
        Points and Connection Formulae ......................... 54
        2.6.1  Introduction .................................... 54
        2.6.2  Derivation of the Wentzel-Kramers-Brilluoin
               Approximate Solutions ........................... 54
        2.6.3  Turning Point Corrections ....................... 57
               2.6.3.1  Langer's Approximate Solution Valid
                        at Turning Point ....................... 57
               2.6.3.2  Behavior of Turning Point .............. 59
               2.6.3.3  Error Bound for Φ Turning Point ........ 60
        2.6.4  Correction Formulae ............................. 62
        2.6.5  Application of Correction Formulae .............. 64
               2.6.5.1  Ordinary Turning Point Problem ......... 64
               2.6.5.2  Effect of an Index Discontinuity at
                        a Turning Point ........................ 66
               2.6.5.3  Buried Modes near an Index
                        Discontinuity at a Turning Point ....... 66
   2.7  Appendix D: Design and Simulation of Planar Optical
        Waveguides ............................................. 67
        2.7.1  Introduction .................................... 67
        2.7.2  Theoretical Background .......................... 67
               2.7.2.1  Structures and Index Profiles .......... 67
               2.7.2.2  Optical Fields of the Guided
                        Transverse Electronic Modes ............ 68
               2.7.2.3  Design of Optical Waveguide
                        Parameters: Preliminary Work ........... 70
        2.7.3  Simulation of Optical Fields and Propagation
               in Slab Optical Waveguide Structures ............ 70
               2.7.3.1  Lightwaves Propagation in Guided
                        Straight Structures .................... 71
               2.7.3.2  Lightwaves Propagation in Guided Bent
                        Structures ............................. 73
               2.7.3.3  Lightwaves Propagation in Y-Junction
                        (Splitter) and nterferometric
                        Structures ............................. 74
   2.7  Problems ............................................... 74
   References .................................................. 76
3  3D Integrated Optical Waveguides ............................ 79
   3.1  Introduction ........................................... 79
   3.2  Marcatili's Method ..................................... 80
        3.2.1  Field and Modes Guided in Rectangular Optical
               Waveguides ...................................... 81
               3.2.1.1  Mode Fields of Hx Modes ................ 81
               3.2.1.2  Boundary Conditions at the Interfaces .. 84
        3.2.2  Mode Fields of Ey Modes ......................... 85
        3.2.3  Dispersion Characteristics ...................... 86
   3.3  Effective Index Method ................................. 86
        3.3.1  General Considerations .......................... 86
        3.3.2  A Pseudo-Waveguide .............................. 90
        3.3.3  Finite Difference Numerical Techniques for 3D
               Waveguides ...................................... 91
   3.4  Non-Uniform Grid Semivectorial Polarized Finite
        Difference Method for Optical Waveguides with
        Arbitrary Index Profile ................................ 91
        3.4.1  Propagation Equation ............................ 91
        3.4.2  Formulation of Non-Uniform Grid Difference
               Equation ........................................ 92
               3.4.2.1  Quasi-Transverse Electronic Mode ....... 93
               3.4.2.2  Inverse Power Method ................... 98
        3.4.3  Ti:LiNbO3 Diffused Channel Waveguide ........... 100
               3.4.3.1  Refractive Index Profile of the
                        Ti:LiNbO3 Waveguide ................... 100
               3.4.3.2  Numerical Simulation and Discussion ... 104
   3.5  Mode Modeling of Rib Waveguides ....................... 112
        3.5.1  Choice of Grid Size ............................ 115
        3.5.2  Numerical Results .............................. 118
        3.5.3  Higher Order Modes ............................. 118
   3.6  Conclusions ........................................... 121
   3.7  Problems .............................................. 123
   References ................................................. 123
4  Single-Mode Optical Fibers: Structures and Transmission
   Properties ................................................. 127
   4.1  Optical Fibers ........................................ 127
        4.1.1  Brief History .................................. 127
        4.1.2  Optical Fiber: General Properties .............. 128
               4.1.2.1  Geometrical Structures and Index
                        Profile ............................... 128
        4.1.3  Fundamental Mode of Weakly Guiding Fibers ...... 130
               4.1.3.1  Solutions of the Wave Equation for
                        Step Index Fiber ...................... 130
               4.1.3.2  Gaussian Approximation ................ 132
               4.1.3.3  Cutoff Properties ..................... 135
               4.1.3.4  Power Distribution .................... 136
               4.1.3.5  Approximation of Spot Size r0 of a
                        Step Index Fiber ...................... 138
        4.1.4  Equivalent Step Index (ESI) Description ........ 138
               4.1.4.1  Definitions of Equivalent Step Index
                        Parameters ............................ 139
               4.1.4.2  Accuracy and Limits ................... 140
               4.1.4.3  Examples on Equivalent Step Index
                        Techniques ............................ 140
               4.1.4.4  General Method ........................ 141
   4.2  Nonlinear Optical Effects ............................. 141
        4.2.1  Nonlinear Self Phase Modulation Effects ........ 142
        4.2.2  Self Phase Modulation .......................... 142
        4.2.3  Cross Phase Modulation ......................... 143
        4.2.4  Stimulated Scattering Effects .................. 144
               4.2.4.1  Stimulated Brillouin Scattering ....... 144
               4.2.4.2  Stimulated Raman Scattering ........... 145
               4.2.4.3  Four-Wave Mixing ...................... 146
   4.3  Optical Fiber Manufacturing and Cabling ............... 147
   4.4  Concluding Remarks .................................... 148
   4.5  Signal Attenuation and Dispersion ..................... 148
        4.5.1  Introductory Remarks ........................... 149
        4.5.2  Signal Attenuation in Optical Fibers ........... 151
               4.5.2.1  Intrinsic or Material Attenuation ..... 151
               4.5.2.2  Absorption ............................ 151
               4.5.2.3  Rayleigh Scattering ................... 151
               4.5.2.4  Waveguide Loss ........................ 152
               4.5.2.5  Bending Loss .......................... 152
               4.5.2.6  Microbending Loss ..................... 152
               4.5.2.7  Joint or Splice Loss .................. 153
               4.5.2.8  Attenuation Coefficient ............... 154
   4.6  Signal Distortion in Optical Fibers ................... 154
        4.6.1  Basics on Group Velocity ....................... 154
        4.6.2  Group Velocity Dispersion ...................... 156
               4.6.2.1  Material Dispersion ................... 156
               4.6.2.2  Waveguide Dispersion .................. 159
               4.6.2.3  Alternative Expression for Waveguide
                        Dispersion Parameter .................. 162
               4.6.2.4  Higher Order Dispersion ............... 162
               4.6.2.5  Polarization Mode Dispersion .......... 163
   4.7  Transfer Function of Single Mode Fibers ............... 165
        4.7.1  Linear Transfer Function ....................... 165
        4.7.2  Nonlinear Fiber Transfer Function .............. 170
        4.7.3  Transmission Bit Rate and the Dispersion
               Factor ......................................... 175
   4.8  Fiber Nonlinearity .................................... 175
        4.8.1  SPM, XPM Effects ............................... 176
        4.8.2  Modulation Instability ......................... 178
        4.8.3  Effects of Mode Hopping ........................ 178
   4.9  Advanced Optical Fibers: Dispersion-Shifted,
        Flattened and Compensated Optical Fibers .............. 178
   4.10 Numerical Solution: Split Step Fourier Method ......... 180
        4.10.1 Symmetrical Split Step Fourier Method (SSFM) ... 180
        4.10.2 MATLAB® Program and MATLAB Simulink Models of
               the SSFM ....................................... 181
               4.10.2.1 MATLAB Program ........................ 181
               4.10.2.2 MATLAB Simulink Model ................. 185
               4.10.2.3 Modeling of Polarization Mode
                        Dispersion ............................ 185
               4.10.2.4 Optimization of Symmetrical SSFM ...... 186
        4.10.3 Remarks ........................................ 186
   4.11 Appendix: MATLAB Program for the Design of Optical
        Fibers ................................................ 187
   4.12 Program Listings of the Split Step Fourier Method
        with Self Phase Modulation and Raman Gain
        Distribution .......................................... 193
   4.13 Program Listings of an Initialization File (Linked
        with Split Step Fourier Method of Section 4.12) ....... 196
   4.14 Problems .............................................. 199
   Some Questions ............................................. 206
   References ................................................. 207
5  Design of Single-Mode Optical Fiber Waveguides ............. 209
   5.1  Introduction .......................................... 209
   5.2  Unified Formulation of Optical Fiber Waveguide
        Problems .............................................. 210
        5.2.1  First Order Scalar Wave Equation ............... 211
        5.2.2  Eigenvalue Equation ............................ 214
        5.2.3  Polarization Correction to b ................... 215
        5.2.4  Waveguide Characteristics Parameters ........... 216
               5.2.4.1  Chromatic Fiber Dispersion ............ 216
               5.2.4.2  Spot Size ............................. 219
               5.2.4.3  Fiber Extinct Loss Formulae ........... 221
               5.2.4.4  Generalized Mode Cutoffs .............. 223
   5.3  Simplified Approach to the Design of Single-Mode
        Optical Fibers ........................................ 223
        5.3.1  Introductory Remarks ........................... 223
        5.3.2  Classification Scheme for Single-Mode Optical
               Fibers ......................................... 224
               5.3.2.1  Fiber with Small Waveguide
                        Dispersion ............................ 225
               5.3.2.2  Fibers with Large Uniform Waveguide
                        Dispersion ............................ 225
               5.3.2.3  Fibers with Very Large Steep
                        Waveguide Dispersion .................. 226
               5.3.2.4  Fiber with Ultra-Large Waveguide
                        Dispersion ............................ 226
        5.3.3  Practical Limit of Single-Mode Optical Fiber
               Design ......................................... 226
        5.3.4  Fiber Design Methodology ....................... 227
        5.3.5  Design Parameters and Equations ................ 228
               5.3.5.1  Group Velocity Dispersion (GVD) ....... 228
               5.3.5.2  Dispersion Slope ...................... 230
        5.3.6  Triple-Clad Profile ............................ 230
               5.3.6.1  Profile Construction .................. 230
               5.3.6.2  Waveguide Guiding Parameters of
                        Triple-Clad Profile Fiber ............. 232
   5.4  Dispersion Flattening and Compensating ................ 233
        5.4.1  Approximation of Waveguide Dispersion
               Parameter Curves ............................... 234
        5.4.2  Effect of Core and Cladding Radius on the
               Total Dispersion ............................... 237
        5.4.3  Effects of Refractive Indices of the Cladding
               Layers on the Total Dispersion Parameter ....... 239
        5.4.4  Effect of Doping Concentration on the Total
               Dispersion ..................................... 242
   5.5  Design Algorithm ...................................... 242
        5.5.1  Design Algorithm for DFF ....................... 242
        5.5.2  Design Algorithm for DCF ....................... 242
   5.6  Design Cases .......................................... 244
        5.6.1  Design Case 1 .................................. 244
        5.6.2  Design Case 2 .................................. 245
        5.6.3  Design Summary ................................. 247
   5.7  Concluding Remarks .................................... 247
   5.8  Problems .............................................. 249
   Appendix A: Derivatives of the RI with Respect to
        Wavelength ............................................ 252
   Appendix B: Higher Order Derivatives of the Propagation
        Constant .............................................. 253
6  Scalar Coupled-Mode Analysis ............................... 291
   6.1  Introduction .......................................... 291
   6.2  Coupler Configurations ................................ 291
        6.2.1  Overview ....................................... 291
               6.2.1.1  Two-Mode Couplers ..................... 291
               6.2.1.2  Fiber-Slab Couplers ................... 292
               6.2.1.3  Grating-Assisted Couplers ............. 292
        6.2.2  Configurations ................................. 292
        6.2.3  Two-Mode Couplers .............................. 293
        6.2.4  Multimode Couplers ............................. 293
        6.2.5  Fiber-Slab Couplers ............................ 293
   6.3  Two-Mode Couplers ..................................... 294
        6.3.1  Coupled-Mode Equations ......................... 294
        6.3.2  Power Parameters ............................... 295
        6.3.3  Symmetric Two-Mode Coupler ..................... 296
               6.3.3.1  Coupled-Mode Equations ................ 296
               6.3.3.2  Analytical Solutions .................. 297
        6.3.4  Asymmetric Two-Mode Coupler .................... 300
               6.3.4.1  Coupled-Mode Equations ................ 300
               6.3.4.2  Analytical Solutions .................. 301
   6.4  Fiber-Slab Couplers ................................... 304
        6.4.1  Coupled-Mode Equations ......................... 304
        6.4.2  Compound-Mode Equations ........................ 307
        6.4.3  Coupling Coefficients .......................... 308
        6.4.4  Attenuation Coefficients ....................... 309
   6.5  Fiber Bending ......................................... 310
        6.5.1  Fiber Bend Expression .......................... 310
        6.5.2  Effects on Coupling ............................ 311
   6.6  Numerical Calculations ................................ 312
        6.6.1  Optical and Structural Parameters .............. 312
               6.6.1.1  Uniform Fiber-Slab Couplers ........... 312
               6.6.1.2  Couplers with Bend Fibers ............. 313
   6.7  Results and Discussion ................................ 315
        6.7.1  Characteristics of Mode Coupling ............... 317
        6.7.2  Characteristics of Ridge Modes ................. 318
        6.7.3  Effects of Other Waveguide Parameters .......... 319
               6.7.3.1  Effect of Light Wavelength ............ 320
               6.7.3.2  Effect of Guide-Layer Size ............ 322
               6.7.3.3  Effect of the Refractive Index of
                        the Cladding .......................... 324
        6.7.4  Distributed Coupling ........................... 324
               6.7.4.1  Fixing n0 Each Time while Varying
                        nƒ, with Respect to ns ................ 324
               6.7.4.2  Fixing nƒ Each Time while Varying n0 .. 327
   6.8  Concluding Remarks .................................... 328
        6.8.1  Symmetric and Asymmetric Two-Mode Coupling
               Systems ........................................ 328
        6.8.2  Uniform Fiber-Slab Coupling Systems ............ 329
        6.8.3  Distributed Fiber-Slab Coupling Systems ........ 329
   6.9  Problems .............................................. 330
   References ................................................. 330
7  Full Coupled-Mode Theory ................................... 333
   7.1  Full Coupled-Mode Analysis ............................ 333
        7.1.1  Introduction ................................... 333
        7.1.2  Two-Mode Couplers .............................. 333
               7.1.2.1  Full Coupled-Mode Equations ........... 333
               7.1.2.2  Analytical Solutions .................. 334
        7.1.3  Fiber-Slab Couplers ............................ 338
               7.1.3.1  Full Coupled-Mode Equations ........... 338
        7.1.4  Full Compound-Mode Equations ................... 342
        7.1.5  Power Conservation ............................. 343
               7.1.5.1  Power Conservation Law ................ 343
               7.1.5.2  Full Scalar Coupled-Mode Expression ... 344
        7.1.6  Numerical Results and Discussion ............... 344
               7.1.6.1  Parameters and Computer Programs ...... 345
               7.1.6.2  Effects of Higher-Order Terms ......... 345
               7.1.6.3  Characteristics of Mode Coupling ...... 350
               7.1.6.4  Characteristics of Ridge Modes ........ 350
        7.1.7  Concluding Remarks ............................. 354
               7.1.7.1  Full CMT of Two-Mode Coupling
                        Systems ............................... 354
               7.1.7.2  Full CMT of Fiber-Slab Coupling
                        Systems ............................... 355
   7.2  Scalar CMT with Vectorial Corrections ................. 355
        7.2.1  Introduction ................................... 355
        7.2.2  Formulations for Fiber-Slab Couplers ........... 356
               7.2.2.1  Field Expression and Index Profile .... 356
               7.2.2.2  Coupled-Mode Equations ................ 357
               7.2.2.3  Vector-Correcting Coupling
                        Coefficients .......................... 358
        7.2.3  Numerical Results and Discussion ............... 359
               7.2.3.1  Effects on Mode Coupling .............. 359
               7.2.3.2  Effect of Slab Thickness .............. 360
               7.2.3.3  Effects on Coupling Coefficients ...... 362
               7.2.3.4  Effects on Compound Modes ............. 363
        7.2.4  Concluding Remarks ............................. 364
   7.3  Grating-Assisted Fiber-Slab Couplers .................. 365
        7.3.1  Introduction ................................... 365
        7.3.2  Analytical Formulation ......................... 365
               7.3.2.1  Coupled-Mode Equations ................ 365
               7.3.2.2  Additional Coupling Coefficients ...... 367
        7.3.3  Numerical Results and Discussion ............... 368
               7.3.3.1  Effects on Mode Coupling .............. 368
               7.3.3.2  Effects of Grating Parameters ......... 369
        7.3.4  Conclusions .................................... 372
   7.4  Analysis of Nonlinear Waveguide Couplers .............. 373
        7.4.1  Nonlinear Two-Mode Couplers .................... 373
               7.4.1.1  Power Parameters ...................... 373
               7.4.1.2  Simplified CMT ........................ 374
               7.4.1.3  Generalized Full CMT .................. 375
        7.4.2  Nonlinear Fiber-Slab Couplers .................. 382
               7.4.2.1  Simplified Scalar CMT ................. 382
               7.4.2.2  Coupling Coefficients ................. 383
               7.4.2.3  Power Tuning Effects .................. 384
        7.4.3  Concluding Remarks ............................. 386
               7.4.3.1  Nonlinear Two-Mode Couplers ........... 386
              7.4.3.2  Nonlinear Fiber-Slab Couplers .......... 387
   7.5  Coupling in Dual-Core Microstructure Fibers ........... 387
        7.5.1  Introduction ................................... 387
        7.5.2  Coupling Characteristics ....................... 388
        7.5.3  Dual-Core MOF Design without Loss .............. 391
        7.5.4  Remarks ........................................ 392
   7.6  Problems .............................................. 393
   References ................................................. 393
8  Nonlinear Optical Waveguides: Switching, Parametric
   Conversion and Systems Applications ........................ 395
   8.1  Introduction .......................................... 395
   8.2  Formulation of Electromagnetic Wave Equations for
        Nonlinear Optical Waveguides .......................... 396
        8.2.1  Introductory Remarks ........................... 396
        8.2.2  Nonlinear Wave Equations and Constitutive
               Relations ...................................... 397
        8.2.3  Extended Operator and Penalty Function Method .. 398
        8.2.4  Eigenvalues and Methods of Moments ............. 400
        8.2.5  Solution Methods for Nonlinear Generalized
               Eigenvalue Problems ............................ 403
               8.2.5.1  Successive over Relaxation and
                        Rayleigh Quotient ..................... 403
               8.2.5.2  Vector Iteration ...................... 404
               8.2.5.3  Posteri Error Estimate ................ 405
               8.2.5.4  Nonlinear Acceleration Techniques ..... 406
   8.3  Numerical Examples of Nonlinear Optical Waveguides .... 407
        8.3.1  Waveguides of Non-Saturation Nonlinear
               Permittivity ................................... 407
               8.3.1.1  Embedded Channel ...................... 407
               8.3.1.2  Overlay Nonlinear Film and Linear
                        Embedded Channel ...................... 412
               8.3.1.3  Waveguides of Nonlinear Permittivity
                        with Saturation ....................... 415
               8.3.1.4  Bistability Phenomena in Nonlinear
                        Optical Waveguide ..................... 418
   8.4  Nonlinear Optical Waveguide for Optical Transmission
        Systems ............................................... 421
        8.4.1  Introduction ................................... 421
        8.4.2  Third-Order Nonlinearity and Propagation
               Equation ....................................... 423
        8.4.3  Simulation Model ............................... 425
               8.4.3.1  Parametric Amplification .............. 425
               8.4.3.2  Demultiplexing of the Optical Time
                        Division Multiplexed Signal ........... 429
               8.4.3.3  Triple Correlation Simulation Model ... 432
               8.4.3.4  Concluding Remarks .................... 434
   8.5  Demultiplexing 320 Gb/s Optical Time Division
        Multiplexed-Differential Quadrature Phase Shift
        Keying Signals Using Parametric Conversion in
        Nonlinear Optical Waveguides .......................... 435
        8.5.1  Introduction ................................... 437
        8.5.2  Operational Principles ......................... 440
               8.5.2.1  Conventional Demultiplexing
                        Technique ............................. 444
               8.5.2.2  Optical Coherent Demultiplexing and
                        Demodulation .......................... 445
        8.5.3  Simulation Models .............................. 446
               8.5.3.1  Optical Time Division Multiplexed-
                        Differential Quadrature Phase Shift
                        Keying Transmitter .................... 446
               8.5.3.2  Fiber Link ............................ 446
               8.5.3.3  Demultiplexer and Receiver ............ 446
               8.5.3.4  Performance of Optical Time Division
                        Multiplexed-Differential Quadrature
                        Phase Shift Keying Receivers: A
                        Comparison ............................ 448
        8.5.4  Influence of Synchronization ................... 448
   8.6  Concluding Remarks .................................... 450
   8.7  Problems .............................................. 454
   References ................................................. 454
9  Integrated Guided-Wave Photonic Transmitters ............... 457
   9.1  Introduction .......................................... 457
   9.2  Optical Modulators .................................... 458
        9.2.1  Phase Modulators ............................... 458
        9.2.2  Intensity Modulators ........................... 460
               9.2.2.1  Phasor Representation and Transfer
                        Characteristics ....................... 460
               9.2.2.2  Bias Control .......................... 462
               9.2.2.3  Chirp Free Optical Modulators ......... 462
               9.2.2.4  Structures of Photonic Modulators ..... 464
               9.2.2.5  Typical Operational Parameters ........ 464
   9.3  Traveling Wave Electrodes for Integrated Modulators ... 465
        9.3.1  Introduction ................................... 466
        9.3.2  Numerical Formulation .......................... 467
               9.3.2.1  Discrete Fields and Potentials ........ 467
               9.3.2.2  Electrode Line Capacitance,
                        Characteristic Impedance and
                        Microwave Effective Index ............. 469
               9.3.2.3  Electric Fields Ex and Ey and the
                        Overlap Integral ...................... 471
        9.3.3  Electrode Simulation and Discussions ........... 471
               9.3.3.1  Grid Allocation and Modeling
                        Performance ........................... 471
               9.3.3.2  Model Accuracy ........................ 474
        9.3.4  Electro-Optic Overlap Integral ................. 476
        9.3.5  Tilted Wall Electrode .......................... 478
        9.3.6  Frequency Responses of Phase Modulation by
               Single Electrode ............................... 481
        9.3.7  Remarks ........................................ 484
   9.4  Lithium Niobate Optical Modulators: Devices and
        Applications .......................................... 485
        9.4.1  Mach-Zehnder Interferometric Modulator and
               Ultra-High Speed Advanced Modulation Formats ... 485
               9.4.1.1  Amplitude Modulation .................. 486
               9.4.1.2  Phase Modulation ...................... 486
               9.4.1.3  Frequency Modulation .................. 486
        9.4.2  LiNbO3 MZIM Fabrication ........................ 487
        9.4.3  Effects of Angled-Wall Structure on RF
               Electrodes ..................................... 488
        9.4.4  Integrated Modulators and Modulation Formats ... 490
        9.4.5  Remarks ........................................ 492
   9.5  Generation and Modulation of Optical Pulse Sequences .. 492
        9.5.1  Return-to-Zero Optical Pulses .................. 492
               9.5.1.1  Generation ............................ 492
               9.5.1.2  Phasor Representation ................. 493
        9.5.2  Differential Phase Shift Keying ................ 498
               9.5.2.1  Background ............................ 498
               9.5.2.2  Optical Differential Phase Shift
                        Keying Transmitter .................... 499
   9.6  Generation of Modulation Formats ...................... 500
        9.6.1  Amplitude Shift Keying ......................... 500
               9.6.1.1  Amplitude-Modulation Amplitude Shift
                        Keying-Non-Return-to-Zero and
                        Amplitude Shift Keying-Return-to-
                        Zero .................................. 500
               9.6.1.2  Amplitude-Modulation on-off Keying
                        Return-to-Zero Formats ................ 501
               9.6.1.3  Amplitude-Modulation Carrier-
                        Suppressed Return-to-Zero Formats ..... 501
        9.6.2  Discrete Phase-Modulation Non-Return-to-Zero
               Formats ........................................ 503
               9.6.2.1  Differential Phase Shift Keying ....... 503
               9.6.2.2  Differential Quadrature Phase Shift
                        Keying ................................ 504
               9.6.2.3  M-Ary Amplitude Differential Phase
                        Shift Keying .......................... 505
        9.6.3  Continuous Phase-Modulation (PM)-Non-Return-
               to-Zero Formats ................................ 506
               9.6.3.1  Linear and Nonlinear Minimum Shift
                        Keying ................................ 509
               9.6.3.2  Minimum Shift Keying as a Special
                        Case of Continuous Phase Frequency
                        Shift Keying .......................... 511
               9.6.3.3  Minimum Shift Keying as Offset
                        Differential Quadrature Phase Shift
                        Keying ................................ 512
               9.6.3.4  Configuration of Photonic Minimum
                        Shift Keying Transmitter Using Two
                        Cascaded Electro-Optic Phase
                        Modulators ............................ 512
               9.6.3.5  Configuration of Optical Minimum
                        Shift Keying Transmitter Using Mach-
                        Zehnder Intensity Modulators: I-Q
                        Approach .............................. 514
        9.6.4  Single Side Band (SSB) Optical Modulators ...... 514
   9.7  Problems .............................................. 515
   References ................................................. 518
10 Nonlinearity in Guided Wave Devices ........................ 521
   10.1 Nonlinear Effects in Integrated Optical Waveguides
        for Photonic Signal Processing ........................ 521
        10.1.1 Introductory Remarks ........................... 521
        10.1.2 Third-Order Nonlinearity and Parametric
               Four-Wave Mixing Process ....................... 522
               10.1.2.1 Nonlinear Wave Equation ............... 522
               10.1.2.2 Four-Wave Mixing Coupled-Wave
                        Equations ............................. 523
               10.1.2.3 Phase Matching ........................ 524
        10.1.3 Transmission Models and Nonlinear Guided Wave
               Devices ........................................ 525
        10.1.4 System Applications of Third-Order Parametric
               Nonlinearity in Optical Signal Processing ...... 526
               10.1.4.1 Parametric Amplifiers ................. 526
               10.1.4.2 Wavelength Conversion and Nonlinear
                        Phase Conjugation ..................... 530
               10.1.4.3 High-Speed Optical Switching .......... 533
               10.1.4.4 Triple Correlation .................... 537
        10.1.5 Application of Nonlinear Photonics in
               Advanced Telecommunications .................... 542
        10.1.6 Remarks ........................................ 548
   10.2 Nonlinear Effects in Actively Mode-locked Fiber
        Lasers ................................................ 549
        10.2.1 Introductory Remarks ........................... 549
        10.2.2 Laser Model .................................... 549
               10.2.2.1 Modeling of the Fiber ................. 550
               10.2.2.2 Modeling of the Er:Doped Fiber
                        Amplifiers ............................ 550
               10.2.2.3 Modeling of the Optical Modulator ..... 550
               10.2.2.4 Modeling of the Optical Filter ........ 551
        10.2.3 Nonlinear Effects in Actively Mode-Locked
               Fiber Lasers ................................... 551
               10.2.3.1 Zero Detuning ......................... 551
               10.2.3.2 Detuning in Actively Mode-Locked
                        Fiber Laser with Nonlinearity Effect .. 553
               10.2.3.3 Pulse Amplitude Equalization in
                        Harmonic Mode-Locked Fiber Laser ...... 555
        10.2.4 Experiments .................................... 556
               10.2.4.1 Experimental Setup .................... 556
               10.2.4.2 Mode-Locked Pulse Train with 10 GHz
                        Repetition Rate ....................... 557
               10.2.4.3 Pulse Shortening and Spectrum
                        Broadening under Nonlinearity Effect .. 559
   10.2.5 Remarks ............................................. 559
   10.3 Nonlinear Photonic Pre-Processing for Bispectrum
        Optical Receivers ..................................... 560
        10.3.1 Introductory Remarks ........................... 560
        10.3.2 Bispectrum Optical Receiver .................... 561
        10.3.3 Triple Correlation and Bispectra ............... 561
               10.3.3.1 Definition ............................ 561
               10.3.3.2 Gaussian Noise Rejection .............. 562
               10.3.3.3 Encoding of Phase Information ......... 562
               10.3.3.4 Eliminating Gaussian Noise ............ 562
        10.3.4 Bispectral Optical Structures .................. 563
               10.3.4.1 Principles ............................ 564
               10.3.4.2 Technological Implementation .......... 564
        10.3.5 Four-Wave Mixing in Highly Nonlinear Media ..... 565
        10.3.6 Third Harmonic Conversion ...................... 565
        10.3.7 Conservation of Momentum ....................... 565
        10.3.8 Estimate of Optical Power Required for Four-
               Wave Mixing .................................... 565
        10.3.9 Mathematical Principles of Four-Wave Mixing
               and the Wave Equations ......................... 566
               10.3.9.1 Phenomena of Four-Wave Mixing ......... 566
               10.3.9.2 Coupled Equations and Conversion
                        Efficiency ............................ 567
               10.3.9.3 Evolution of Four-Wave Mixing along
                        the Nonlinear Waveguide Section ....... 568
        10.3.10 Transmission and Detection .................... 568
               10.3.10.1 Optical Transmission Route and
                         Simulation Platform .................. 568
               10.3.10.2 Four-Wave Mixing and Bispectrum
                         Receiving ............................ 569
               10.3.10.3 Performance .......................... 569
        10.3.11 Remarks ....................................... 572
   10.4 Raman Effects in Microstructure Optical Fibers or
        Photonic Crystal Fibers ............................... 573
        10.4.1 Introductory Remarks ........................... 573
        10.4.2 Raman Gain in Photonic Crystal Fibers .......... 575
               10.4.2.1 Measurement of Raman Gain ............. 575
               10.4.2.2 Effective Area and Raman Gain
                        Coefficient ........................... 576
        10.4.3 Remarks ........................................ 582
   10.5 Raman Gain of Segmented Core Profile Fibers ........... 582
        10.5.1 Segmented-Core Fiber Design for Raman
               Amplification .................................. 583
        10.5.2 Advantages of Dispersion Compensating Fiber
               as a Lumped/Discrete Raman Amplifier (DRA) ..... 583
        10.5.3 Spectrum of Raman Amplification ................ 584
        10.5.4 Key Equations for Deducing the Raman Gain of
               Ge-Doped Silica ................................ 584
        10.5.5 Design Methodology for Dispersion
               Compensating Fiber - Discrete Raman
               Amplifiers ..................................... 586
        10.5.6 Design Steps ................................... 589
        10.5.7 Sampled Profile Design ......................... 590
        10.5.8 Remarks ........................................ 591
   10.6 Summary ............................................... 592
   References ................................................. 595
Appendix 1 Coordinate System Transformations .................. 601
Appendix 2 Models for Couplers in FORTRAN ..................... 607
Appendix 3 Overlap Integral ................................... 633
Appendix 4 Coupling Coefficients .............................. 637
Appendix 5 Additional Coupling Coefficients ................... 639
Appendix 6 Elliptic Integral .................................. 641
Appendix 7 Integrated Photonics: Fabrication Processes
   for LiNbO3 Ultra-Broadband Optical Modulators .............. 643
Appendix 8 Planar Waveguides by Finite Difference Method -
   FORTRAN PROGRAMS ........................................... 665
Appendix 9 Interdependence between Electric and Magnetic
   Fields and Electromagnetic Waves ........................... 729
Index ......................................................... 743


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:08 2019. Размер: 45,919 bytes.
Посещение N 1788 c 20.08.2013