Kuo K.K. Fundamentals of turbulent and multiphase combustion (Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKuo K.K. Fundamentals of turbulent and multiphase combustion / K.K.Kuo, R.Acharya. - Hoboken: Wiley, 2012. - xxiv, 879 p.: ill. - Bibliogr.: p.799-868. - Ind.: p.869-879. - ISBN 978-0-470-22622-3
 

Оглавление / Contents
 
Preface ....................................................... xix

1  Introduction and Conservation Equations ...................... 1
   1.1  Why Is Turbulent and Multiphase Combustion Important? ... 3
   1.2  Different Applications for Turbulent and Multiphase
        Combustion .............................................. 3
        1.2.1  Applications in High Rates of Combustion of
               Materials for Propulsion Systems ................. 5
        1.2.2  Applications in Power Generation ................. 7
        1.2.3  Applications in Process Industry ................. 7
        1.2.4  Applications in Household and Industrial
               Heating .......................................... 7
        1.2.5  Applications in Safety Protections for Unwanted
               Combustion ....................................... 7
        1.2.6  Applications in Ignition of Various Combustible
               Materials ........................................ 8
        1.2.7  Applications in Emission Control of Combustion
               Products ......................................... 8
        1.2.8  Applications in Active Control of Combustion
               Processes ........................................ 8
   1.3  Objectives of Combustion Modeling ....................... 8
   1.4  Combustion-Related Constituent Disciplines .............. 9
   1.5  General Annroach for Solvine Combustion Problems ........ 9
   1.6  Governing Equations for Combustion Models .............. 11
        1.6.1  Conservation Equations .......................... 11
        1.6.2  Transport Equations ............................. 11
        1.6.3  Common Assumptions Made in Combustion Models .... 11
        1.6.4  Equation of State ............................... 12
               1.6.4.1 High-Pressure Correction ................ 13
   1.7  Definitions of Concentrations .......................... 14
   1.8  Definitions of Energy and Enthalpy Forms ............... 16
   1.9  Velocities of Chemical Species ......................... 19
        1.9.1  Definitions of Absolute and Relative Mass and
               Molar Fluxes .................................... 20
   1.10 Dimensionless Numbers .................................. 23
   1.11 Derivation of Species Mass Conservation Equation and
        Continuity Equation for Multicomponent Mixtures ........ 23
   1.12 Momentum Conservation Equation for Mixture ............. 29
   1.13 Energy Conservation Equation for Multicomponent
        Mixture ................................................ 33
   1.14 Total Unknowns versus Governing Equations .............. 40
   Homework Problems ........................................... 41
2  Laminar Premixed Flames ..................................... 43
   2.1  Basic Structure of One-Dimensional Premixed Laminar
        Flames ................................................. 46
   2.2  Conservation Equations for One-Dimensional Premixed
        Laminar Flames ......................................... 47
        2.2.1  Various Models for Diffusion Velocities ......... 49
               2.2.1.1  Multicomponent Diffusion Velocities
                        (First-Order Approximation) ............ 49
               2.2.1.2  Various Models for Describing Source
                        Terms due to Chemical Reactions ........ 54
        2.2.2  Sensitivity Analysis ............................ 66
   2.3  Analytical Relationships for Premixed Laminar Flames
        with a Global Reaction ................................. 68
        2.3.1  Three Analysis Procedures for Premixed Laminar
               Flames .......................................... 77
        2.3.2  Generalized Expression for Laminar Flame
               Speeds .......................................... 80
               2.3.2.1 Reduced Reaction Mechanism for HC-Air
                       Flump ................................... 81
        2.3.3  Dependency of Laminar Flame Speed on
               Temperature and Pressure ........................ 82
        2.3.4  Premixed Laminar Flame Thickness ................ 84
   2.4  Effect of Flame Stretch on Laminar Flame Speed ......... 86
        2.4.1  Definitions of Stretch Factor and Karlovitz
               Number .......................................... 86
        2.4.2  Governing Equation for Premixed Laminar Flame
               Surface Area .................................... 94
        2.4.3  Determination of Unstretched Premixed Laminar
               Flame Speeds and Markstein Lengths .............. 95
   2.5  Modeling of Soot Formation in Laminar Premixed
        Flames ................................................ 103
        2.5.1  Reaction Mechanisms for Soot Formation and
               Oxidation ...................................... 104
               2.5.1.1  Empirical Models for Soot Formation ... 106
               2.5.1.2  Detailed Models for Soot Formation
                        and Oxidation ......................... 108
               2.5.1.3  Formation of Aromatics ................ 109
               2.5.1.4  Growth of Aromatics ................... 110
               2.5.1.5  Migration Reactions ................... 112
               2.5.1.6  Oxidation of Aromatics ................ 113
        2.5.2  Mathematical Formulation of Soot Formation
               Model .......................................... 114
        Homework Problems ..................................... 124
3  Laminar Non-Premixed Flames ................................ 125
   3.1  Basic Structure of Non-Premixed Laminar Flames ........ 128
   3.2  Flame Sheet Model ..................................... 129
   3.3  Mixture Fraction Definition and Examples .............. 130
        3.3.1  Balance Equations for Element Mass Fractions ... 134
        3.3.2  Temperature-Mixture Fraction Relationship ...... 138
   3.4  Flamelet Structure of a Diffusion Flame ............... 142
        3.4.1  Physical Significance of the Instantaneous
               Scalar Dissipation Rate ........................ 145
        3.4.2  Steady-State Combustion and Critical Scalar
               Dissipation Rate ............................... 147
   3.5  Time and Length Scales in Diffusion Flames ............ 151
   3.6  Examples of Laminar Diffusion Flames .................. 153
        3.6.1 Unsteady Mixing Layer ........................... 153
        3.6.2  Counterflow Diffusion Flames ................... 155
        3.6.3  Coflow Diffusion Flame or Jet Flames ........... 165
   3.7  Soot Formation in Laminar Diffusion Flames ............ 172
        3.7.1  Soot Formation Model ........................... 173
               3.7.1.1  Particle Inception .................... 174
               3.7.1.2  Surface Growth and Oxidation .......... 174
        3.7.2  Appearance of Soot ............................. 175
        3.7.3  Experimental Studies by Using Coflow Burners ... 176
               3.7.3.1  Sooting Zone .......................... 178
               3.7.3.2  Effect of Fuel Structure .............. 182
               3.7.3.3  Influence of Additives ................ 183
               3.7.3.4  Coflow Ethylene/Air Laminar
                        Diffusion Flames ...................... 186
               3.7.3.5  Modeling of Soot Formation ............ 191
   Homework Problems .......................................... 204
4  Background in Turbulent Flows .............................. 206
   4.1  Characteristics of Turbulent Flows .................... 210
        4.1.1 Some Pictures ................................... 212
   4.2  Statistical Understanding of Turbulence ............... 213
        4.2.1  Ensemble Averaging ............................. 214
        4.2.2  Time Averaging ................................. 215
        4.2.3  Spatial Averaging .............................. 215
        4.2.4  Statistical Moments ............................ 215
        4.2.5  Homogeneous Turbulence ......................... 216
        4.2.6  Isotropic Turbulence ........................... 217
   4.3  Conventional Averaging Methods ........................ 217
        4.3.1  Reynolds Averaging ............................. 218
               4.3.1.1 Correlation Functions .................. 222
        4.3.2  Favre Averaging ................................ 225
        4.3.3  Relation between Time Averaged-Quantities and
               Mass-Weighted Averaged Quantities .............. 227
        4.3.4  Mass-Weighted Conservation and Transport
               Equations ...................................... 228
               4.3.4.1  Continuity and Momentum Equations ..... 228
               4.3.4.2  Energy Equation ....................... 230
               4.3.4.3  Mean Kinetic Energy Equation .......... 231
               4.3.4.4 Reynolds-Stress Transport Equations .... 232
               4.3.4.5  Turbulence-Kinetic-Energy Equation .... 234
               4.3.4.6  Turbulent Dissipation Rate Equation ... 236
               4.3.4.7  Species Mass Conservation Equation .... 242
        4.3.5  Vorticity Equation ............................. 243
        4.3.6  Relationship between Enstrophy and the
               Turbulent Dissipation Rate ..................... 246
   4.4  Turbulence Models ..................................... 247
   4.5  Probability Density Function .......................... 249
        4.5.1  Distribution Function .......................... 250
        4.5.2  Joint Probability Density Function ............. 252
        4.5.3  Bayes' Theorem ................................. 254
   4.6  Turbulent Scales ...................................... 256
        4.6.1 Comment on Kolmogorov Hypotheses ................ 260
   4.7  Large Eddy Simulation ................................. 266
        4.7.1  Filtering ...................................... 268
        4.7.2  Filtered Momentum Equations and Subgrid Scale
               Stresses ....................................... 270
        4.7.3  Modeling of Subgrid-Scale Stress Tensors ....... 274
   4.8  Direct Numerical Simulation ........................... 279
        Homework Problems ..................................... 280
5  Turbulent Premixed Flames .................................. 283
   5.1  Physical Interpretation ............................... 289
   5.2  Some Early Studies in Correlation Development ......... 291
        5.2.1  Damköhler's Analysis (1940) .................... 292
        5.2.2  Schelkin's Analysis (1943) ..................... 295
        5.2.3  Karlovitz, Denniston, and Wells's Analysis
               (1951) ......................................... 296
        5.2.4  Summerfield's Analysis (1955) .................. 297
        5.2.5  Kovasznay's Characteristic Time Approach
               (1956) ......................................... 298
        5.2.6  Limitations of the Preceding Approaches ........ 299
   5.3  Characteristic Scale of Wrinkles in Turbulent
        Premixed Flames ....................................... 304
        5.3.1  Schlieren Photographs .......................... 305
        5.3.2  Observations on the Structure of Wrinkled
               Laminar Flames ................................. 305
        5.3.3  Measurements of Scales of Unburned and Burned
               Gas Lumps ...................................... 307
        5.3.4  Length Scale of Wrinkles ....................... 310
   5.4  Development of Borghi Diagram for Premixed Turbulent
        Flames ................................................ 310
        5.4.1  Physical Interpretation of Various Regimes in
               Borghi's Diagram ............................... 311
               5.4.1.1  Wrinkled Flame Regime ................. 311
               5.4.1.2  Wrinkled Flame with Pockets Regime
                        (also Called Corrugated Flame
                        Regime) ............................... 311
               5.4.1.3  Thickened Wrinkled Flames ............. 313
               5.4.1.4  Thickened Flames with Possible
                        Extinctions/Thick Flames .............. 314
        5.4.2  Klimov-Williams Criterion ...................... 314
        5.4.3  Construction of Borghi Diagram ................. 316
               5.4.3.1  Thick Flames (or Distributed Reaction
                        Zone or Well-Stirred Reaction Zone) ... 318
        5.4.4  Wrinkled Flames ................................ 318
               5.4.4.1  Wrinkled Flamelets (Weak Turbulence) .. 320
               5.4.4.2  Corrugated Flamelets (Strong
                        Turbulence) ........................... 322
   5.5  Measurements in Premixed Turbulent Flames ............. 324
   5.6  Eddy-Break-up Model ................................... 324
        5.6.1  Spalding's EBU Model ........................... 335
        5.6.2  Magnussen and Hjertager's EBU Model ............ 336
   5.7  Intermittency ......................................... 337
   5.8  Flame-Turbulence Interaction .......................... 339
        5.8.1 Effects of Flame on Turbulence .................. 341
   5.9  Bray-Moss-Libby Model ................................. 342
        5.9.1  Governing Equations ............................ 349
        5.9.2  Gradient Transport ............................. 353
        5.9.3  Countergradient Transport ...................... 354
        5.9.4  Closure of Transport Terms ..................... 357
               5.9.4.1  Gradient Closure ...................... 357
               5.9.4.2  BML Closure ........................... 358
        5.9.5  Effect of Pressure Fluctuations Gradients ...... 361
        5.9.6  Summary of DNS Results ......................... 364
   5.10 Turbulent Combustion Modeling Approaches .............. 368
   5.11 Geometrical Description of Turbulent Premixed Flames
   and G-Equation ............................................. 368
        5.11.1 Level Set Approach for the Corrugated
               Flamelets Regime ............................... 371
        5.11.2 Level Set Approach for the Thin Reaction Zone
               Regime ......................................... 374
   5.12 Scales in Turbulent Combustion ........................ 376
   5.13 Closure of Chemical Reaction Source Term .............. 380
   5.14 Probability Density Function Approach to Turbulent
        Combustion ............................................ 381
        5.14.1 Derivation of the Transport Equation for
               Probability Density Function ................... 386
        5.14.2 Moment Equations and PDF Equations ............. 391
        5.14.3 Lagrangian Equations for Fluid Particles ....... 392
        5.14.4 Gradient Transport Model in Composition PDF
               Method ......................................... 395
        5.14.5 Determination of Overall Reaction Rate ......... 397
        5.14.6 Lagrangian Monte Carlo Particle Methods ........ 398
        5.14.7 Filtered Density Function Approach ............. 398
        5.14.8 Prospect of PDF Methods ........................ 399
   Homework Problems .......................................... 400
   Project No. 1, 400 Project No. 2 ........................... 401
6  Non-premixed Turbulent Flames .............................. 402
   6.1  Major Issues in Non-premixed Turbulent Flames ......... 404
   6.2  Turbulent Damköhler number ............................ 406
   6.3  Turbulent Reynolds Number ............................. 407
   6.4  Scales in Non-premixed Turbulent Flames ............... 407
        6.4.1 Direct Numerical Simulation and Scales .......... 411
   6.5  Turbulent Non-premixed Combustion Regime Diagram ...... 414
   6.6  Turbulent Non-premixed Target Flames .................. 418
        6.6.1  Simple Jet Flames .............................. 419
               6.6.1.1  CH4/H2/N2 Jet Flame ................... 420
               6.6.1.2  Effect of Jet Velocity ................ 430
        6.6.2  Piloted Jet Flames ............................. 432
               6.6.2.1 Comparison of Simple Jet Flame and
                       Sandia Flames D and F .................. 448
        6.6.3  Bluff Body Flames .............................. 452
        6.6.4  Swirl Stabilized Flames ........................ 455
   6.7  Turbulence-Chemistry Interaction ...................... 456
        6.7.1  Infinite Chemistry Assumption .................. 456
               6.7.1.1  Unity Lewis Number .................... 457
               6.7.1.2  Nonunity Lewis Number ................. 458
        6.7.2  Finite-Rate Chemistry .......................... 458
   6.8  Probability Density Approach for Turbulent
        Non-premixed Combustion ............................... 462
        6.8.1  Physical Models ................................ 465
        6.8.2  Turbulent Transport in Velocity-Composition
               Pdf Methods .................................... 466
               6.8.2.1  Stochastic Mixing Model ............... 467
               6.8.2.2  Stochastic Reorientation Model ........ 468
        6.8.3  Molecular Transport and Scalar Mixing Models ... 469
               6.8.3.1  Interaction by Exchange with the
                        Mean Model ............................ 471
               6.8.3.2  Modified Curl Mixing Model ............ 471
               6.8.3.3  Euclidean Minimum Spanning Tree
                        Model ................................. 472
   6.9  Flamelet Models ....................................... 476
        6.9.1  Laminar Flamelet Assumption .................... 477
        6.9.2  Unsteady Flamelet Modeling ..................... 478
        6.9.3  Flamelet Models and PDF ........................ 479
   6.10 Interactions of Flame and Vortices .................... 480
        6.10.1 Flame Rolled Up in a Single Vortex ............. 482
        6.10.2 Flame in a Shear Layer ......................... 483
        6.10.3 Jet Flames ..................................... 483
        6.10.4 Kármán Vortex Street/V-Shaped Flame
               Interaction .................................... 484
        6.10.5 Burning Vortex Ring ............................ 484
        6.10.6 Head-on Flame/Vortex Interaction ............... 485
        6.10.7 Experimental Setups for Flame/Vortex
               Interaction Studies ............................ 486
               6.10.7.1 Reaction Front/Vortex Interaction in
                        Liquids ............................... 486
               6.10.7.2 Jet Flames ............................ 487
               6.10.7.3 Counterflow Diffusion Flames .......... 488
   6.11 Generation and Dissipation of Vorticity Effects ....... 492
   6.12 Non-premixed Flame-Vortex Interaction Combustion
        Diagram ............................................... 493
   6.13 Flame Instability in Non-premixed Turbulent Flames .... 496
   6.14 Partially Premixed Flames or Edge Flames .............. 500
        6.14.1 Formation of Edge Flames ....................... 501
        6.14.2 Triple Flame Stabilization of Lifted
               Diffusion Flame ................................ 502
        6.14.3 Analysis of Edge Flames ........................ 503
   Homework Problems .......................................... 506
   Project No. 6.1 ............................................ 506
   Project No. 6.2 ............................................ 507
   Project No. 6.3  ........................................... 507
7  Background in Multiphase flows with Reactions .............. 509
   7.1  Classification of Multiphase Flow Systems ............. 512
   7.2  Practical Problems Involving Multiphase Systems ....... 514
   7.3  Homogeneous versus Multi-component/Multiphase
        Mixtures .............................................. 515
   7.4  CFD and Multiphase Simulation ......................... 516
   7.5  Averaging Methods ..................................... 520
        7.5.1  Eulerian Average - Eulerian Mean Values ........ 522
        7.5.2  Lagrangian Average - Lagrangian Mean Values .... 523
        7.5.3  Boltzmann Statistical Average .................. 524
        7.5.4  Anderson and Jackson's Averaging for Dense
               Fluidized Beds ................................. 525
   7.6  Local Instant Formulation ............................. 533
   7.7  Eulerian-Eulerian Modeling ............................ 536
        7.7.1  Fluid-Fluid Modeling ........................... 536
               7.7.1.1 Closure Models ......................... 538
        7.7.2  Fluid-Solid Modeling ........................... 540
               7.7.2.1  Closure Models ........................ 541
               7.7.2.2  Dense Particle Flows .................. 547
               7.7.2.3  Dilute Particle Flows ................. 549
   7.8  Eulerian-Lagrangian Modeling .......................... 550
        7.8.1 Fluid-Solid Modeling ............................ 551
               7.8.1.1  Fluid Phase ........................... 551
               7.8.1.2  Solid Phase ........................... 552
   7.9  Interfacial Transport (Jump Conditions) ............... 555
   7.10 Interface-Tracking/Capturing .......................... 561
        7.10.1 Interface Tracking ............................. 563
               7.10.1.1 Markers on Interface (Surface Marker
                        Techniques) ........................... 564
               7.10.1.2 Surface-Fitted Method ................. 567
        7.10.2 Interface Capturing ............................ 568
               7.10.2.1 Markers in Fluid (MAC Formulation) .... 568
               7.10.2.2 Volume of Fluid Method ................ 569
   7.11 Discrete Particle Methods ............................. 573
   Homework Problems .......................................... 575
8  Spray Atomization and Combustion ........................... 576
   8.1  Introduction to Spray Combustion ...................... 578
   8.2  Spray-Combustion Systems .............................. 580
   8.3  Fuel Atomization ...................................... 582
        8.3.1  Injector Types ................................. 582
        8.3.2  Atomization Characteristics .................... 584
   8.4  Spray Statistics ...................................... 584
        8.4.1  Particle Characterization ...................... 584
        8.4.2  Distribution Function .......................... 585
               8.4.2.1  Logarithmic Probability Distribution
                        Function .............................. 588
               8.4.2.2  Rosin-Rammler Distribution Function ... 588
               8.4.2.3  Nukiyama-Tanasawa Distribution
                        Function .............................. 589
               8.4.2.4  Upper-Limit Distribution Function of
                        Mugele and Evans ...................... 589
        8.4.3  Transport Equation of the Distribution
               Function ....................................... 590
        8.4.4  Simplified Spray Combustion Model for Liquid-
               Fuel Rocket Engines ............................ 591
   8.5  Spray Combustion Characteristics ...................... 594
   8.6  Classification of Models Developed for Spray
        Combustion Processes .................................. 602
        8.6.1  Simple Correlations ............................ 602
        8.6.2  Droplet Ballistic Models ....................... 603
        8.6.3  One-Dimensional Models ......................... 603
        8.6.4  Stirred-Reactor Models ......................... 604
        8.6.5  Locally Homogeneous-How Models ................. 605
        8.6.6  Two-Phase-Flow (Dispersed-Flow) Models ......... 605
   8.7  Locally Homogeneous Flow Models ....................... 605
        8.7.1  Classification of LHF Models ................... 606
        8.7.2  Mathematical Formulation of LHF Models ......... 609
               8.7.2.1  Basic Assumptions ..................... 609
               8.7.2.2  Equation of State ..................... 609
               8.7.2.3  Conservation Equations ................ 615
               8.7.2.4  Turbulent Transport Equations ......... 619
               8.7.2.5  Boundary Conditions ................... 620
               8.7.2.6  Solution Procedures ................... 620
               8.7.2.7  Comparison of LHF-Model Predictions
                        with Experimental Data ................ 626
   8.8  Two-Phase-Flow (Dispersed-Flow) Models ................ 634
        8.8.1  Particle-Source-in-Cell Model (Discrete-
               Droplet Model) ................................. 637
               8.8.1.1 Models for Single Drop Behavior ........ 639
        8.8.2  Drop Breakup Process and Mechanism ............. 654
               8.8.2.1  Drop Breakup Process .................. 654
               8.8.2.2  Multi-component Droplet Breakup by
                        Microexplosion ........................ 659
        8.8.3  Deterministic Discrete Droplet Models .......... 662
               8.8.3.1  Gas-Phase Treatment in DDDMs .......... 664
               8.8.3.2  Liquid-Phase Treatment in DDDMs ....... 666
               8.8.3.3  Results of DDDMs ...................... 667
        8.8.4  Stochastic Discrete Droplet Models ............. 669
        8.8.5  Comparison of Results between DDDMs and SDDMs .. 671
        8.8.6  Dense Sprays ................................... 682
               8.8.6.1  Introduction .......................... 682
               8.8.6.2  Background ............................ 684
               8.8.6.3  Jet Breakup Models .................... 690
               8.8.6.4  Impinging Jet Atomization ............. 699
   8.9  Group-Combustion Models of Chiu ....................... 700
        8.9.1  Group-Combustion Numbers ....................... 701
        8.9.2  Modes of Group Burning in Spray Flames ......... 703
   8.10 Droplet Collison ...................................... 706
        8.10.1 Droplet-Droplet Collisions ..................... 707
        8.10.2 Droplet-Wall Collision ......................... 708
        8.10.3 Interacting Droplet in a Many-Droplet System ... 710
   8.11 Optical Techniques for Particle Size Measurements ..... 710
        8.11.1 Types of Optical Particle Sizing Methods ....... 711
        8.11.2 Single Particle Counting Methods ............... 711
               8.11.2.1 Scattering Ratio Technique ............ 712
               8.11.2.2 Intensity Deconvolution Method ........ 713
               8.11.2.3 Interferometric Method (Phase-Shift
                        Method) ............................... 713
               8.11.2.4 Visibility Method Using a Laser
                        Doppler Velocimeter LDV ............... 713
               8.11.2.5 Phase Doppler Sizing Anemometer ....... 713
        8.11.3 Ensemble Particle Sizing Techniques ............ 714
               8.11.3.1 Extinction Measurement Techniques ..... 714
               8.11.3.2 Multiple Angle Scattering Technique ... 714
               8.11.3.3 Fraunhofer Diffraction Particle
                        Analyzer .............................. 715
               8.11.3.4 Integral Transform Solutions for
                        Near-Forward Scattering ............... 716
   8.12 Effect of Droplet Spacing on Spray Combustion ......... 717
        8.12.1 Evaporation and Combustion of Droplet
               Arrays ......................................... 717
   Homework Problems .......................................... 720

Appendix A: Useful Vector and Tensor Operations ............... 723
Appendix B: Constants and Conversion Factors Often Used in
            Combustion ........................................ 751
Appendix C: Naming of Hydrocarbons ............................ 755
Appendix D: Detailed Gas-Phase Reaction Mechanism for
            Aromatics Formation ............................... 759
Appendix E: Particle Size-U.S. Sieve Size and Tyler Screen
            Mesh Equivalents .................................. 795
Bibliography .................................................. 799
Index ......................................................... 869


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:10 2019. Размер: 32,458 bytes.
Посещение N 1496 c 20.08.2013