Pelant I. Luminescence spectroscopy of semiconductors (Oxford; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPelant I. Luminescence spectroscopy of semiconductors / I.Pelant, J.Valenta. - Oxford; New York: Oxford University Press, 2012. - xiv, 542 p.: ill. - Incl. bibl. ref. and indexes. - ISBN 978-0-19-958833-6
 

Оглавление / Contents
 
1  Introduction ................................................. l
   References ................................................... 7
2  Experimental techniques of luminescence spectroscopy ......... 9
   2.1  Emission and excitation spectra ......................... 9
   2.2  Types of photodetectors ................................ 15
   2.3  Monochromators and spectrographs ....................... 31
        2.3.1  Dispersion and resolving power .................. 33
        2.3.2  Throughput of monochromators and spectrographs .. 40
   2.4  Signal detection methods in luminescence spectroscopy .. 44
        2.4.1  Phase-synchronous detection ..................... 44
        2.4.2  Photon counting ................................. 48
   2.5  Signal-to-noise ratio in a scanning monochromator ...... 53
   2.6  Fourier luminescence spectroscopy ...................... 57
   2.7  Spectral corrections ................................... 58
   2.8  Influence of slit opening on the shape of emission
        spectra ................................................ 63
   2.9  Time-resolved luminescence measurements ................ 67
        2.9.1  Direct imaging of the luminescence response ..... 68
        2.9.2  Phase-shift method .............................. 70
        2.9.3  Time-correlated photon counting ................. 72
        2.9.4  Boxcar integrator ............................... 73
        2.9.5  Streak camera ................................... 76
   2.10 Problems ............................................... 78
   References .................................................. 80
3  Kinetic description of luminescence processes ............... 82
   3.1  Radiative and non-radiative recombination.
        Luminescence quantum yield ............................. 82
   3.2  Monomolecular process .................................. 85
   3.3  Bimolecular process .................................... 87
   3.4  Stretched exponential .................................. 89
   3.5  Multiple processes present simultaneously .............. 91
   3.6  Problems ............................................... 96
   References .................................................. 96
4  Phonons and their participation in optical phenomena ........ 98
   4.1  Lattice vibrations - phonons ........................... 98
   4.2  Electron-phonon and exciton-phonon interactions ....... 103
   4.3  Lattice vibrations associated with point defects ...... 110
   4.4  A localized optical centre in a solid matrix - the
        configurational coordinate model ...................... 112
   4.5  The shape of absorption and emission spectra of a
        localized centre ...................................... 116
   4.6  Thermal quenching of luminescence ..................... 120
   4.7  Problems .............................................. 121
   References ................................................. 122
5  Channels of radiative recombination in semiconductors ...... 123
   5.1  Overview of luminescence processes in crystalline
        semiconductors ........................................ 123
   5.2  Recombination of free electron-hole pairs ............. 124
        5.2.1  Direct bandgap ................................. 125
        5.2.2  Indirect bandgap ............................... 128
   5.3  Recombination of a free electron with a neutral
        acceptor (e-A0) and of a free hole with a neutral
        donor (h-D0) .......................................... 132
   5.4  Recombination of donor-acceptor pairs (D0-A0) ......... 135
   5.5  Luminescence excited by two-photon absorption ......... 139
   5.6  Luminescence from transition metal and rare earth
        ion impurities ........................................ 144
   5.7  Problems .............................................. 146
   References ................................................. 147
6  Non-radiative recombination ................................ 148
   6.1  Transformation of the excitation energy into heat ..... 149
        6.1.1  Multiphonon recombination ...................... 149
        6.1.2  Auger and bimolecular recombination ............ 153
   6.2  Creation of lattice defects ........................... 157
   6.3  Photochemical changes ................................. 158
   6.4  Problems .............................................. 159
   References ................................................. 160
7  Luminescence of excitons ................................... 161
   7.1  Concept of the Wannier exciton ........................ 162
        7.1.1  Absorption spectrum of the Wannier exciton ..... 165
        7.1.2  Direct bandgap: resonant luminescence of free
               exciton-polaritons ............................. 168
        7.1.3  Direct bandgap: luminescence of free excitons
               with emission of optical phonons ............... 171
        7.1.4  Luminescence of free excitons in indirect-
               bandgap semiconductors ......................... 177
   7.2  Bound excitons ........................................ 180
        7.2.1  Excitons bound to shallow impurities ........... 182
        7.2.2  Quantitative luminescence analysis of shallow
               impurities in silicon .......................... 190
        7.2.3  Excitons bound to isoelectronic impurities ..... 194
        7.2.4  Self-trapped excitons .......................... 199
   7.3 Problems ............................................... 201
   References ................................................. 202
8  Highly excited semiconductors .............................. 205
   8.1  Experimental considerations ........................... 206
   8.2  Excitonic molecule or biexciton ....................... 207
        8.2.1  Identification of the EM emission line ......... 208
        8.2.2  Determination of biexciton parameters .......... 216
   8.3  Collisions of free excitons ........................... 218
   8.4  Electron-hole liquid (EHL)............................. 220
        8.4.1  Luminescence determination of EHL parameters ... 223
        8.4.2  Identification of the EHL emission band ........ 226
        8.4.3  Coexistence of excitonic molecules with
               electron-hole liquid ........................... 228
   8.5  Electron-hole plasma (EHP) ............................ 230
        8.5.1  Mott transition ................................ 230
        8.5.2  Luminescence of EHP ............................ 232
   8.6  Bose-Einstein condensation of excitons ................ 234
        8.6.1  Properties of the Bose-Einstein distribution ... 234
        8.6.2  Luminescence experiment: Bose-Einstein
               condensation yes or no? ........................ 236
   8.7  Problems .............................................. 239
   References ................................................. 240
9  Luminescence of disordered semiconductors .................. 242
   9.1  Densities of states in bands .......................... 242
   9.2  Temperature dependence of luminescence ................ 244
   9.3  Distribution of luminescence lifetimes ................ 248
   9.4  Spectral shape of the emission band ................... 250
   9.5  Some other properties of luminescence of disordered
        semiconductors ........................................ 255
        9.5.1  Correlation effects ............................ 255
        9.5.2  Non-radiative recombination .................... 256
        9.5.3  Luminescence of impurities and defects ......... 258
        9.5.4  Luminescence 'fatigue' ......................... 260
   9.6  Problems .............................................. 261
   References ................................................. 262
10 Stimulated emission ........................................ 263
   10.1 Spontaneous versus stimulated emission. Optical
        gain .................................................. 263
   10.2 Optical gain in semiconductors ........................ 267
   10.3 Spectral shape of the optical gain .................... 271
   10.4 Stimulated emission in an indirect-bandgap
        semiconductor ......................................... 278
   10.5 Participation of excitons in stimulated emission ...... 282
   10.6 Experimental techniques for measuring the optical
        gain .................................................. 287
        10.6.1 Variable stripe length (VSL) technique ......... 287
        10.6.2 Pump and probe (P&P) method .................... 295
   10.7 Problems .............................................. 299
   References ................................................. 300
11 Electroluminescence ........................................ 302
   11.1 Historical notes ...................................... 302
   11.2 High-field electroluminescence ........................ 304
        11.2.1 Experimental considerations .................... 304
        11.2.2 Mechanisms of high-field electroluminescence ... 308
        11.2.3 Intensity, spectral and temporal
               characteristics ................................ 316
   11.3 Injection electroluminescence ......................... 321
        11.3.1 Electrical properties of a p-n junction ........ 322
        11.3.2 Intensity, spectral and temporal
               characteristics of LEDs ........................ 327
   11.4 Electroluminescence of a p-n junction biased in the
        reverse direction ..................................... 333
   11.5 Problems .............................................. 336
   References ................................................. 337
12 Electronic structure and luminescence of low-dimensional
   semiconductors ............................................. 339
   12.1 Basic types of low-dimensional semiconductors ......... 340
        12.1.1 Semiconductor heterostructures ................. 340
        12.1.2 Basic types of quantum-well heterostructures ... 342
   12.2 Density of states in low-dimensional semiconductors ... 344
   12.3 Quantum wells (layers)—two-dimensional
        semiconductors ........................................ 347
        12.3.1 Single quantum well with infinite barriers ..... 347
        12.3.2 Quantum well with finite barriers .............. 351
        12.3.3 Excitons in a quantum well ..................... 353
        12.3.4 Optical transitions in a quantum well .......... 355
        12.3.5 Luminescence of quantum wells .................. 357
   12.4 Quantum wires ......................................... 359
   12.5 Quantum dots - nanocrystals ........................... 363
        12.5.1 Quantum dot with spherically symmetric
               potential ...................................... 363
        12.5.2 Types of quantum dots according to the
               strength of the quantum confinement effect ..... 365
        12.5.3 Luminescence of quantum dots ................... 368
   12.6 Exciton-phonon interaction. Phonon bottleneck ......... 371
   12.7 Some special phenomena ................................ 374
   12.8 Problems .............................................. 378
   References ................................................. 379
13 Effects of high excitation in low-dimensional structures ... 381
   13.1 Excitonic molecule (biexciton) in a quantum well ...... 382
   13.2 Trions in a quantum well .............................. 384
   13.3 Collisions of free excitons in a quantum well ......... 386
   13.4 Electron-hole plasma (EHP) and electron-hole liquid
        (EHL) in 2D structures ................................ 387
   13.5 Biexcitons, EHP, and EHL in quantum wires ............. 392
   13.6 Effects of high excitation in quantum dots
        (nanocrystals) ........................................ 395
   13.7 Problems .............................................. 398
   References ................................................. 399
14 Stimulated emission and losing in low-dimensional
   structures ................................................. 400
   14.1 Stimulated emission in quantum wells .................. 400
        14.1.1 Localized excitons ............................. 401
        14.1.2 Radiative decay of an exciton with emission
               of an LO-phonon (X-LO) ......................... 404
        14.1.3 Stimulated emission in electron-hole plasma
               (EHP) .......................................... 405
   14.2 Stimulated emission in quantum wires .................. 408
   14.3 Stimulated emission in nanocrystals ................... 410
        14.3.1 Nanocrystals dispersed in a matrix ............. 410
        14.3.2 Heterostructures with ordered quantum dots ..... 416
   14.4 Random lasing ......................................... 418
   14.5 Problems .............................................. 420
   References ................................................. 421
15 Silicon nanophotonics ...................................... 423
   15.1 Silicon nanocrystals .................................. 424
   15.2 Optical gain in silicon nanocrystals .................. 426
   15.3 Active planar waveguides made of silicon
        nanocrystals .......................................... 428
   15.4 Electroluminescence of silicon nanocrystals ........... 431
   15.5 Silicon nanocrystals combined with Er3+ ions .......... 434
   15.6 Biological applications of silicon nanocrystals ....... 437
   15.7 Problems .............................................. 438
   References ................................................. 439
16 Photonic structures ........................................ 441
   16.1 Photonic crystals ..................................... 441
        16.1.1 Spontaneous emission ........................... 443
        16.1.2 Stimulated emission ............................ 446
   16.2 Microresonators ....................................... 447
   16.3 Microcavities ......................................... 449
   16.4 Single photon sources ................................. 451
   16.5 Problems .............................................. 453
   References ................................................. 454
17 Spectroscopy of single semiconductor nanocrystals .......... 455
   17.1 Basic principles ...................................... 456
   17.2 Experimental techniques ............................... 457
        17.2.1 Wide-field micro-spectroscopy .................. 458
        17.2.2 Scanning techniques ............................ 460
   17.3 Preparation of samples ................................ 465
        17.3.1 Electron-and ion-beam lithography .............. 465
        17.3.2 Colloidal dispersions .......................... 466
   17.4 Experimental observation of luminescence from
        individual nanocrystals ............................... 467
        17.4.1 Hidden fine structure of luminescence spectra .. 467
        17.4.2 Changes in spectra: jumps, shifts, blinking .... 469
        17.4.3 Stark effect ................................... 470
        17.4.4 Luminescence polarization ...................... 472
        17.4.5 Luminescence intermittency - blinking .......... 478
   17.5 Nanocrystals as sources of non-classical photon flux .. 485
        17.5.1 Measuring photon statistics .................... 485
        17.5.2 Experimental manifestation of non-classical
               light emitted by a single nanocrystal .......... 487
   17.6 Problems .............................................. 490
   References ................................................. 491

Appendices .................................................... 493
   A  Convolution ............................................. 493
   В  Emission spectrum of free excitons including phonon
      broadening .............................................. 495
   С  Luminescence of an excitonic molecule ................... 497
   D  Kinetic model of exciton condensation ................... 502
   E  Bose-Einstein condensation .............................. 503
   F  Emission band due to strong electron-phonon
      interaction ............................................. 505
   G  Fitting the optical gain spectral shape in the model
      of k-relaxation ......................................... 507
   H  Reabsorption of luminescence in semiconductors .......... 511
   I  Oscillator strength ..................................... 513
   J  Fitting with a double exponential (Kocka's summation) ... 514
   К  Absolute quantum yield of luminescent materials ......... 515
   L  Basic description of statistics of light from
      classical and non-classical sources ..................... 521
   M  Behaviour of multi-component spectral mixtures: the
      isostilbic point ........................................ 526

Subject index ................................................. 530
Material index ................................................ 538


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:10 2019. Размер: 21,035 bytes.
Посещение N 1878 c 20.08.2013