Zharkova V. Electron and proton kinetics and dynamics in flaring atmospheres (Weinheim, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаZharkova V. Electron and proton kinetics and dynamics in flaring atmospheres. - Weinheim: Wiley-VCH, 2012. - xxxv, 422 p.: ill. - Ref.: p.407-418. - Ind.: p.419-422. - ISBN 978-3-527-40847-4
 

Оглавление / Contents
 
Preface ........................................................ XI
Color Plates ................................................... XV
1  Observational Phenomena of Solar Flares ...................... 1
   1.1  Observational Constraints ............................... 1
   1.2  Hard X-Ray Light Curves and Spectra ..................... 1
        1.2.1  Light Curves ..................................... 1
        1.2.2  Photon and Electron Energy Spectra ............... 2
        1.2.3  Electron Numbers ................................. 4
   1.3  Light Curves and Energy Spectra of Gamma-Rays ........... 5
        1.3.1  у-Ray Light Curves ............................... 5
        1.3.2  Energy Spectra and Abundances of Ions in Flares .. 6
        1.3.3  Ion Numbers ...................................... 6
   1.4  Geometry of Hard X-Ray and Gamma-Ray Sources ............ 7
        1.4.1  Differences in Footpoint Spectral Indices ........ 7
        1.4.2  Hard X-Ray and Gamma-Ray Source Locations ........ 9
   1.5  Pre- and Postflare Hard X-Ray and Radio Emission ........ 9
   1.6  Magnetic Field Changes Associated with Flares .......... 11
        1.6.1  Local Magnetic Field Variations ................. 11
   1.7  UV and Optical Emission ................................ 15
   1.8  Seismic Responses ...................................... 16
   1.9  Critical Issues ........................................ 18
2  Particle Acceleration in Flares ............................. 21
   2.1  Models of Particle Acceleration ........................ 21
        2.1.1  Basic Physics ................................... 21
        2.1.2  Magnetic Reconnection Models Associated with
               Flares .......................................... 22
        2.1.3  Particle Acceleration in a Reconnecting
               Current Sheet ................................... 26
        2.1.4  Particle Acceleration by Shocks and Turbulence .. 29
   2.2  Recent Theoretical Developments ........................ 33
        2.2.1  Stochastic Acceleration ......................... 33
        2.2.2  Electron Acceleration in Collapsing Current
               Sheets .......................................... 35
        2.2.1  Particle Acceleration in a Single 3-D RCS with
               Complicated Magnetic Topology ................... 40
        2.2.4  Estimations of Accelerated Particle Parameters .. 46
        2.2.5  Comparison of the Parameters of Accelerated
               Particles ....................................... 48
        2.2.6  Particle Acceleration in 3-D MHD Models with
               Fan and Spine Reconnection ...................... 49
   2.3  Limitations of the Test-Particle Approach .............. 54
        2.3.1  The Polarization Electric Field ................. 55
        2.3.2  Turbulent Electric Fields ....................... 55
   2.4  Particle-in-Cell Simulation of Acceleration in a 3-D
        RCS .................................................... 57
        2.4.1  Problem Formulation ............................. 57
        2.4.2  Test-Particle Simulations ....................... 60
        2.4.3  PIC Simulation Results .......................... 62
   2.5  Particle Acceleration in Collapsing Magnetic Islands ... 70
        2.5.1  Tearing-Mode Instability in Current Sheets ...... 70
        2.5.2  Particle Acceleration in Magnetic Islands -
               PIC Approach .................................... 71
   2.6  Limitations of the PIC Approach ........................ 74
   2.7  Probing Theories versus Observations ................... 76
        2.7.1  Interrelation between Acceleration and
               Transport ....................................... 76
        2.7.2  Testing Acceleration Models against
               Observational Constraints ....................... 77
3  Electron-Beam Precipitation - Continuity Equation
   Approach .................................................... 81
   3.1  Introduction ........................................... 81
   3.2  Particle Energy Losses ................................. 82
        3.2.1  Particle Trajectories at Scattering ............. 82
        3.2.2  Energy Loss and Momentum Variations ............. 84
   3.3  Continuity Equation Approach for Electrons: Pure
        Collisions ............................................. 92
        3.3.1  Solutions of Continuity Equation for Power-Law
               Beam Electrons .................................. 93
        3.3.2  Beam Electron Densities ......................... 95
        3.3.3  Mean Electron Spectra ........................... 96
        3.3.4  Hard X-Ray Bremsstrahlung Emission by Beam
               Electrons ....................................... 97
        3.3.5  Heating Functions .............................. 102
   3.4  Continuity Equation Approach for Electrons - Pure
        Electric Field ........................................ 104
        3.4.1  Estimation of the Ohmic Loss Effect ............ 105
        3.4.2  Kinetic Solutions for a Pure Electric Field .... 109
        3.4.3  Estimations of Electron-Beam Stability ......... 118
4  Electron Beam Precipitation - Fokker-Planck Approach ....... 121
   4.1  General Comments on Particle and Energy Transport ..... 121
   4.2  Problem Formulation ................................... 122
        4.2.1  The Fokker-Planck Equation ..................... 122
        4.2.2  Normalization of a Distribution Function ....... 124
        4.2.3  Dimensionless Equations ........................ 125
        4.2.4  Integral Characteristics of an Electron Beam ... 127
   4.3  Simulation Method ..................................... 128
   4.4  Stationary Fokker-Planck Approach (dƒ / dt = 0) ....... 129
        4.4.1  Initial Condition .............................. 329
        4.4.2  Beam Electron Distribution Functions ........... 130
        4.4.3  Electron-Beam Density Variations with Depth .... 140
        4.4.4  Mean Electron Fluxes ........................... 142
   4.5  Time-Dependent Fokker-Planck Equation ................. 143
        4.5.1  Initial and Boundary Conditions ................ 144
        4.5.2  Relaxation to a Steady State ................... 145
   4.6  Regime of a Stationary Injection ...................... 147
        4.6.1  Distributions of Electron Beams with a Lower-
               Energy Part .................................... 147
        4.6.2  Variations of Electron-Beam Density ............ 153
        4.6.3  Effects of Magnetic Field Convergence .......... 155
        4.6.4  Mean Electron Fluxes of a Steady Beam .......... 159
        4.6.5  Plasma Heating by a Stationary Beam in
               Converging Magnetic Field ...................... 159
   4.7  Impulsive Injection ................................... 161
        4.7.1  Mean Electron Flux for Beam Impulse ............ 162
        4.7.2  Energy Deposition by a Beam Impulse ............ 164
   4.8  Conclusions ........................................... 167
5  Proton Beam Kinetics ....................................... 169
   5.1  Proton Beam Distribution Function ..................... 169
        5.1.1  Effect of Coulomb Collisions on Proton
               Precipitation .................................. 369
        5.1.2  Effect of a Self-Induced Electric Field on
               Proton Precipitation ........................... 172
        5.1.3  Effect of Magnetic Field Convergence on
               Proton Precipitation ........................... 172
        5.1.4  Effect of Wave-Proton Interaction .............. 172
        5.1.5  Collisions versus Kinetic Alfven Waves: the
               Effect on Proton Precipitation ................. 174
        5.1.6  Fokker-Planck Equation for Proton Beams ........ 376
   5.2  Precipitation of Proton Beam: Numerical Simulations ... 377
        5.2.1  Numerical Calculation of Proton Beam
               Distribution Function .......................... 377
        5.2.2  Accepted Parameters ............................ 379
        5.2.3  Proton Beam Distribution Functions ............. 379
   5.3  General Discussion of Proton and Electron
        Precipitation ......................................... 382
        5.3.1  Beam Spectra at Precipitation .................. 182
        5.3.2  Energy and Momentum Transfer ................... 182
6  Hydrodynamic Response to Particle Injection ................ 187
   6.1  Hydrodynamic Equations ................................ 187
        6.1.1  Additional Equations ........................... 188
        6.1.2  Boundary Conditions ............................ 189
   6.2  Hydrodynamic Responses to Heating by Electron Beams ... 190
        6.2.1  The Heating Functions by High Energy
               Particles ...................................... 190
        6.2.2  Simulated Heating Functions .................... 190
        6.2.3  Hydrodynamics Caused by Electron Beams ......... 192
        6.2.4  Hydrodynamics Formed by Mixed Electron and
               Proton Beams ................................... 197
        6.2.5  Momenta Delivered by Beams and Hydrodynamic
               Shocks ......................................... 199
        6.2.6  Comparison of Ambient Heating by Electrons
               and Protons for 28 October 2003 Flare .......... 200
   6.3  Case Study of a Hydrodynamics of the 25 July 2004
        Flare ................................................. 204
        6.3.1  Observations ................................... 204
        6.3.2  Hydrodynamics of Ambient Plasma ................ 211
   6.4  Conclusions ........................................... 213
7  Hard X-Ray Bremsstrahlung Emission and Polarization ........ 215
   7.1  Introduction .......................................... 215
   7.2  Stokes Parameters for HXR Emission .................... 236
        7.2.1  Geometry of Observations ....................... 217
        7.2.2  Nonrelativistic HXR Cross-Sections ............. 219
        7.2.3  Relativistic Angle-Dependent Cross-Sections .... 221
   7.3  Simulation Results .................................... 223
        7.3.1  Time-Dependent Hard X-Ray Photon Spectra for
               a Short Impulse ................................ 223
        7.3.2  HXR Emission with Nonrelativistic Cross-
               Sections for Steady Injection .................. 224
        7.3.3  HXR Emission with Relativistic Cross-Sections
               for Steady Injection ........................... 229
        7.3.4  HXR Bremsstrahlung Directivity and
               Polarization for a Steady Beam Injection ....... 234
   7.4  Comparison with Observations .......................... 239
        7.4.1  HXR Bremsstrahlung Photon Spectra .............. 239
        7.4.2  HXR Bremsstrahlung Directivity and
               Polarization ................................... 241
        7.4.3  Relationships between Electron and HXR Photon
               Spectra and Electron Numbers ................... 244
8  Microwave Emission and Polarization ........................ 247
   8.1  General Comments ...................................... 247
   8.2  Evaluation of Models for Electron Precipitation ....... 249
   8.3  Gyrosynchrotron Plasma Emissivity and Absorption
        Coefficient ........................................... 251
   8.4  Gyrosynchrotron Emission from a Homogeneous Source .... 253
        8.4.1  Depth Variations of MW Emission ................ 253
        8.4.2  Gyrosynchrotron Emission from a Whole Coronal
               Magnetic Tube .................................. 260
   8.5  Comparison with Observations .......................... 263
        8.5.1  Flare of 23 July 2002 .......................... 263
        8.5.2  Flare of 10 March 2001 ......................... 265
        8.5.3  Simulated HXR and MW Emission .................. 270
   8.6  Conclusion ............................................ 283
9  Langmuir Wave Generation by Electron Beams ................. 287
   9.1  Electron Beams and Their Stability .................... 287
   9.2  Basic Equations ....................................... 289
        9.2.1  Method of Solution and Model Parameters ........ 290
   9.3  Results and Discussion ................................ 291
        9.3.1  Electric Field Effects on Langmuir Turbulence .. 291
   9.4  Conclusions ........................................... 298
10 Nonthermal Hydrogen Emission Caused by Electron Beams ...... 301
   10.1 Introduction .......................................... 301
   10.2 Nonthermal Excitation and Ionization Rates ............ 302
        10.2.1 Beam Electron Density .......................... 303
        10.2.2 Nonthermal Hydrogen Excitation Rates ........... 304
        10.2.3 Nonthermal Hydrogen Ionization Rates ........... 306
        10.2.4 Comparison of Thermal and Nonthermal
               Excitation and Ionization Rates ................ 306
   10.3 Hydrogen Emission Produced by Impacts with Beam
        Electrons ............................................. 307
        10.3.1 Equations of Statistical Equilibrium ........... 309
        10.3.2 Radiative Transfer Equations ................... 310
        10.3.3 Conservation Equation for a Particle Number .... 311
        10.3.4 Method of Solution ............................. 312
        10.3.5 Accepted Parameters ............................ 313
   10.4 Hydrogen Excitation and Ionization .................... 313
        10.4.1 Comparison of Nonthermal and Thermal
               Excitation and Ionization Rates ................ 313
        10.4.2 Nonthermal Effects on Hydrogen Emission ........ 317
        10.4.3 Hydrogen Radiative Losses in Flares ............ 322
        10.4.4 Role of Backwarming Heating .................... 322
   10.5 Interpretation of Hα Emission in 25 July 2004 Flare ... 324
        10.5.1 Fast Changes of Hα Emission in the Main Flare
               Event .......................................... 324
        10.5.2 Temporal and Spatial Evolution of the Main
               Flare Event .................................... 325
        10.5.3 Resulting Hα Emission .......................... 328
11 Hα-Line Impact Polarization ................................ 331
   11.1 Introduction .......................................... 331
   11.2 Basic Models .......................................... 333
        11.2.1 Physical Model ................................. 333
        11.2.2 Kinetic Model .................................. 333
        11.2.3 Radiative Model ................................ 334
   11.3 Density Matrix Approach ............................... 336
        11.3.1 Steady State Equation .......................... 336
        11.3.2 Radiative Tensor ............................... 337
        11.3.3 Collisional Tensor ............................. 338
        11.3.4 Probabilities of Radiative Transitions ......... 338
        11.3.5 Probabilities of Collisional Transitions ....... 339
        11.3.6 Stokes Parameters .............................. 339
   11.4 Results and Discussion ................................ 340
        11.4.1 Hα-Line Polarization Profiles .................. 343
        11.4.2 Depth and Time Variations of Hα-Line
               Polarization ................................... 344
        11.4.3 Interpretation of Observational Features ....... 345
   11.5 Interpretation of Polarimetrie Hα Observations ........ 346
        11.5.1 Revised Theoretical Model ...................... 349
        11.5.2 Results of Observations ........................ 353
        11.5.3 Observational Recommendations .................. 356
   11.6 Conclusions ........................................... 357
12 Sunquakes Associated with Solar Flares ..................... 359
   12.1 First Sunquake of 9 July 1996 Flare ................... 359
        12.1.1 Methods of Sunquake Detection .................. 361
        12.1.2 Results from First Sunquake Detection .......... 363
        12.1.3 Discrepancies between the Parameters Derived
               and the Basic Flare Theory ..................... 364
   12.2 Observations of Other Sunquakes ....................... 365
   12.3 Sunquakes Associated with the Flare of 28 October
        2003 .................................................. 367
        12.3.1  Hard X-Ray, у-Ray Emission, and Accelerated
                Particles in the Earth's Orbit ................ 368
        12.3.2  Observed Seismic Sources ...................... 371
        12.3.3  Comparison of Momenta Delivered by Beams and
                Hydrodynamic Shocks ........................... 376
   12.4 Seismic Sources Observed by GONG in 14 December 2006
        Flare ................................................. 378
        12.4.1 Flare Morphology and Evolution ................. 379
        12.4.2 Photospheric and Chromospheric Signatures for
               the 14 December 2006 Flare ..................... 379
        12.4.3 Photospheric Velocities ........................ 380
   12.5 Observations of Solar Interior ........................ 381
        12.5.1 Validation of Time-Distance Analysis with
               GONG ........................................... 383
        12.5.2 Helioseismic Results ........................... 383
        12.5.3 Summary of Observed Signatures in Sunquakes .... 387
   12.6 Theoretical Implications of Particle Kinetics and
        Dynamics Leading to Sunquakes ......................... 388
        12.6.1 Topology of Particle Acceleration .............. 388
        12.6.2 Particle Precipitation ......................... 389
        12.6.3 Plasma Responses to High-Energy Particles ...... 391
   12.7 Nonthermal Ionization and Backwarming Heating ......... 395
        12.7.1 Hydrogen Nonthermal Excitation and Ionization .. 395
        12.7.2 The Role of Backwarming Heating ................ 396
        12.7.3 Ni-Line Emission ............................... 397
        12.7.4 Generation of Seismic Response by a Pinpoint
               Source ......................................... 401
        12.7.5 Magnetic Field Change During Flares ............ 402
   12.8 Conclusion ............................................ 404
   References ................................................. 407

Index ......................................................... 419


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:12 2019. Размер: 22,501 bytes.
Посещение N 1238 c 20.08.2013