Shtern V.N. Counterflows: paradoxical fluid mechanics phenomena (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаShtern V.N. Counterflows: paradoxical fluid mechanics phenomena. - Cambridge; New York: Cambridge University Press, 2012. - xiv, 470 p.: ill. - Ref.: p.457-466. - Ind.: p.467-470. - ISBN 978-1-107-02759-6
 

Оглавление / Contents
 
Acknowledgments .............................................. xiii

1  Introduction ................................................. 1
   1.1  Natural and Technological Counterflows .................. 1
   1.2  Physical Mechanisms of Counterflows ..................... 2
        1.2.1  Accumulation ..................................... 2
        1.2.2  Swirl Effect ..................................... 4
        1.2.3  Separation ....................................... 7
        1.2.4  Thermal Convection ............................... 8
   1.3  Counterflow Applications, Control, and Stability ........ 9
   1.4  Approach ............................................... 10
2  Accumulation Counterflows ................................... 11
   2.1  Conical Similarity Flows ............................... 11
   2.2  Conical Jets ........................................... 13
        2.2.1  Equation Reduction .............................. 13
        2.2.2  Jet in the Free Space ........................... 14
        2.2.3  Jet Above a Plane ............................... 15
   2.3  Super-Collimated Jet ................................... 16
   2.4  Capillary Jet .......................................... 20
        2.4.1  Features of Capillary Jets ...................... 20
        2.4.2  Conical Similarity Model of the Meniscus Flow ... 22
        2.4.3  Numerical Simulations of the Cone-Jet Flow ...... 24
3  Bifurcation of Swirl in Conical Counterflows ................ 28
   3.1  Observations of Spontaneous Swirl Appearance ........... 28
   3.2  Bifurcation of Swirl as Symmetry Breaking .............. 30
        3.2.1  Reduction to a Boundary-Value ODE Problem ....... 30
        3.2.2  Necessary Conditions for Swirl Bifurcation ...... 32
   3.3  Swirl Appearance in Capillary Flows .................... 33
        3.3.1  Two-Medium Flows ................................ 33
        3.3.2  Swirl Origination ............................... 34
        3.3.1  Swirl Development ............................... 35
        3.3.4  Two-Cell Circulation ............................ 37
        3.3.5  Collimated Annular Jets ......................... 38
        3.3.6  Swirl Bifurcation in the Meniscus Flow .......... 40
   3.4  Swirl Appearance in Electro-Vortex Flows ............... 43
        3.4.1  Problem Formulation ............................. 43
        3.4.2  Forced Swirl .................................... 44
        3.4.3  Multi-Cell Counterflows ......................... 46
        3.4.4  Self-Swirling ................................... 51
   3.5  Mechanism of Swirl Appearance in Conical Flows ......... 56
        3.5.1  Comparison of Self-Swirling Capillary and
               Electro-Vortex Flows ............................ 56
        3.5.2  Mechanism of Swirl Accumulation ................. 56
   3.5.3. Destroyed Bifurcation ................................ 58
4  Bifurcation of Counter-Swirl ................................ 60
   4.1  Outline of Stability and Bifurcation Features .......... 60
   4.2  Parallel Jetlike Flows ................................. 62
   4.3  Secondary Flows ........................................ 62
   4.4  The Lyapunov-Schmidt Method ............................ 63
   4.5  Bifurcations in the Jetlike Flows ...................... 66
   4.6  MHD Flow in an Annular Pipe ............................ 68
   4.7  Solving Stability Problems for Large Re ................ 68
   4.8  Bifurcations in the Annular-Pipe Flows ................. 70
5  Conical Counterflows Driven by Swirl ........................ 73
   5.1  Swirling Jet Above a Plane ............................. 73
        5.1.1  Reduction to a Boundary-Value ODE Problem ....... 73
        5.1.2  Asymptotic Analysis of Two-Cell Flow ............ 75
        5.1.3  Hysteresis ...................................... 79
        5.1.4  Vortex Breakdown ................................ 83
        5.1.5  Vortex Consolidation ............................ 85
        5.1.6  Cusp Catastrophe ................................ 87
        5.1.7  Near-Plane Outflow .............................. 90
   5.2  A Half-Line Vortex in a Free Space ..................... 92
        5.2.1  Tornado and Delta-Wing Vortices ................. 92
        5.2.2  Multiple Solutions .............................. 94
        5.2.3  Modeling Turbulent Vortex Breakdown ............. 98
   5.3  Swirling Jets in Conical Regions ....................... 98
        5.3.1  Suction Devices and Their Modeling .............. 98
        5.3.2  Asymptotic Analysis ............................ 100
        5.3.3  Decomposition of the Flow Force ................ 102
        5.3.4  Descending One-Cell Flow ....................... 103
        5.3.5  Ascending One-Cell Flow ........................ 106
        5.3.6  Flow Inside the θC = 45° Cone .................. 107
        5.3.7  Flow Outside the θC = 45° Cone ................. 109
        5.3.8  Pressure Peak in Swirling Annular Jets ......... 112
   5.4  Super-Collimation in Swirling Counterflows ............ 114
        5.4.1  Bipolar Jet Induced by Vortex-Sink Accretion ... 114
        5.4.2  Analysis of Super-Collimation .................. 115
        5.4.3  Vortex-Wall Interaction as a Model Tornado ..... 118
6  Jetlike Swirling Counterflows .............................. 122
   6.1  Power-Law Jets ........................................ 122
        6.1.1  Introduction ................................... 122
        6.1.2  Problem Formulation ............................ 123
        6.1.3  Features of Power-Law Jets ..................... 125
   6.2  Analytical Modeling of Multiple Counterflows .......... 132
        6.2.1  Motivation ..................................... 132
        6.2.2  Generalized Vortex Sink ........................ 134
        6.2.3  Shape of the Surface of Revolution ............. 136
        6.2.4  Inner Solutions ................................ 139
        6.2.5  Composite Vortex Sink .......................... 142
        6.2.6  Applications of the Generalized Vortex Sink .... 148
        6.2.7  Applications of the Composite Solutions ........ 152
   6.3  Swirling Counterflows in a Capillary Meniscus ......... 160
        6.3.1. Effects of Swirling Gas Jet .................... 160
        6.3.2. Analysis of Changing Flow Topology ............. 164
7  Swirling Counterflows in Cylindrical Devices ............... 168
   7.1  Swirl-Decay Mechanism ................................. 168
        7.1.1  Elongated Counterflows ......................... 168
        7.1.2  Problem Formulation ............................ 168
        7.1.3  Modeling Swirl Decay ........................... 170
        7.1.4  Velocity Profiles .............................. 172
        7.1.5  Pressure Distribution .......................... 173
        7.1.6  End-Wall Effects ............................... 175
   7.2  Modeling Counterflows in Vortex Separators ............ 177
        7.2.1  Introduction ................................... 177
        7.2.2  Two Flow Components ............................ 178
        7.2.3  Core Flow Features ............................. 181
        7.2.4  Flow Approximation Near End Walls .............. 184
        7.2.5  Particle Trajectories .......................... 185
        7.2.6  Pressure Distribution .......................... 187
        7.2.7  Centrifugal Stratification ..................... 188
        7.2.8  Summary of the Asymptotic Analysis ............. 189
   7.3  Numerical Study of Vortex Breakdown and Double
        Counterflow ........................................... 190
        7.3.1  Technological Importance of Local and Global
               Circulations ................................... 190
        7.3.2  Formulation of the Numerical Problem ........... 190
        7.3.3  Development of Global Counterflow as Swirl
               Number Increases ............................... 192
        7.3.4  Development of Global Counterflow as Re
               Increases ...................................... 193
        7.3.5  Comparison with the Asymptotic Theory .......... 194
        7.3.6  Vortex Breakdown Development ................... 196
        7.3.7  Double Counterflow Development ................. 199
        7.3.8  Summary of Double Counterflow Features ......... 205
   7.4  Double Counterflow in a Vortex Trap ................... 206
        7.4.1  Technological Importance of Vortex Traps ....... 206
        7.4.2  Development of a Global Counterflow ............ 207
        7.4.3  Analytical Approximation of the Global
               Counterflow in the Vortex Trap ................. 209
        7.4.4  Solid Particle Trajectory in the Single
               Counterflow .................................... 210
        7.4.5  Double Counterflow in the Vortex Trap .......... 212
        7.4.6  Solid Particle Trajectories in the Double
               Counterflow .................................... 213
        7.4.7  Development of Karman Vortex Street ............ 216
        7.4.8  Summary of the Vortex Trap Features ............ 217
8  Separation Counterflows .................................... 219
   8.1  Counterflows in a Plane Diverging Channel ............. 219
        8.1.1  Brief Literature Review ........................ 219
        8.1.2  Problem Formulation ............................ 220
        8.1.3  Patterns of Jeffery-Hamel Counterflows ......... 221
        8.1.4  Scaling ........................................ 223
        8.1.5  Counting ....................................... 223
   8.2  Counterflows Due to Bifurcations of Vortex Source
        Flow .................................................. 225
        8.2.1  Equations for Disturbances ..................... 225
        8.2.2  Bifurcation Character .......................... 227
        8.2.3  Phase Pattern and Asymptotic Features .......... 228
        8.2.4  Spiral Vortices ................................ 229
   8.3  Stability of Plane Counterflows ....................... 233
        8.3.1  Approach ....................................... 233
        8.3.2  Stability of Vortex-Source Flow ................ 235
        8.3.3  Spatial Stability of the Jeffery-Hamel Flow .... 236
   8.4  Transition Flows ...................................... 238
        8.4.1  Jet in the Sink Flow ........................... 238
        8.4.2  Tripolar Jet ................................... 240
        8.4.3  Attachment Flow in the Diverging Channel ....... 242
        8.4.4  Jet Emerging from a Slit in a Wall ............. 243
        8.4.5  Jet Emerging from a Thin Plane Channel ......... 245
   8.5  Summary of Plane Counterflow Features ................. 247
        8.5.1  Spatial Instability ............................ 247
        8.5.2  Further Applications ........................... 248
        8.5.3  Limitations .................................... 250
   8.6  Counterflows Due to Internal Separation in Spatial
        Conical Flows ......................................... 250
        8.6.1  Introduction ................................... 250
        8.6.2  Governing Equations ............................ 252
        8.6.3  Basic Flows .................................... 253
        8.6.4  Experiment ..................................... 254
        8.6.5  Linear Stability Approach ...................... 256
        8.6.6  Instability of the Squire-Wang Flow ............ 257
        8.6.7  Instability of Divergent Flow in a Conical
               Region ......................................... 259
        8.6.8  Instability of Marangoni Flow .................. 260
        8.6.9  Concluding Remarks ............................. 264
9  Temperature Distribution in Swirling Counterflows .......... 266
   9.1  Temperature Distribution in Conical Similarity Jets ... 266
        9.1.1  Reduction of the Heat Equation ................. 266
        9.1.2  Point Source of Heat in the Landau Jet ......... 267
        9.1.3  Point Source of Heat in the Half-Line Vortex ... 267
        9.1.4  Point Source of Heat in Long's Jet ............. 270
        9.1.5  Heat Transfer in a Near-Wall Jet ............... 273
        9.1.6  Summary of the Heat Transfer Features in
               Conical Swirling Counterflows .................. 279
   9.2  Temperature Distribution in Generalized Vortex-Sink ... 280
        9.2.1  Reduction of Energy Equation ................... 280
        9.2.2  Axisymmetric Temperature Distribution .......... 281
        9.2.3  Spiral Thermal Distribution .................... 281
        9.2.4  Species Distribution ........................... 283
        9.2.5  Three-Dimensional Temperature Distribution ..... 284
   9.3  Temperature Distribution in a Cylindrical
        Counterflow ........................................... 285
10 Onset of Buoyancy Similarity Counterflows .................. 288
   10.1 Development of Conical Buoyancy Bipolar Jets .......... 288
        10.1.1 Introduction ................................... 288
        10.1.2 Problem Formulation ............................ 289
        10.1.3 Instability of the Rest State .................. 290
        10.1.4 Weakly Nonlinear Analysis of Convection Onset .. 292
        10.1.5 Development of Bipolar Convection via
               Hysteresis ..................................... 294
        10.1.6 Development of Strong Jets ..................... 296
        10.1.7 Effects of Swirl on the Jets ................... 300
        10.1.8 Stability of Conical Buoyancy-Driven Flows ..... 303
        10.1.9 Concluding Remarks ............................. 306
   10.2 Onset of Keplerian Buoyancy Flows ..................... 308
        10.2.1 Introduction ................................... 308
        10.2.2 Similarity Family .............................. 309
        10.2.3 Keplerian Convection ........................... 311
        10.2.4 Infinitesimal Disturbances of the Equilibrium
               State .......................................... 312
        10.2.5 Critical Rayleigh Numbers for Convection
               Onset .......................................... 313
        10.2.6 Neutral Modes for a Few Small Values of Racr ... 313
        10.2.7 Concluding Remarks ............................. 314
11 Thermal Convection Counterflows ............................ 316
   11.1 Model of a Free Convection Near a Black Smoker ........ 317
        11.1.1 Reduction of the Boussinesq Equations .......... 317
        11.1.2 Flow Features at Pr = 0 ........................ 318
        11.1.3 Super-Collimation .............................. 319
   11.2 Model of a Free Convection Near a Volcano ............. 321
        11.2.1 Reduction of the Boussinesq Equations .......... 321
        11.2.2 Flow Features at Pr = 0 ........................ 321
        11.2.3 Super-Collimation .............................. 324
        11.2.4 Thermal Quadruple on the Horizontal Wall ....... 326
        11.2.5 Convection Inside a Conical Crater ............. 329
   11.3 Centrifugal Convection ................................ 330
        11.3.1 Introduction ................................... 330
        11.3.2 Problem Formulation ............................ 331
        11.3.3 Parallel Flow .................................. 332
        11.3.4 End-Wall Effect ................................ 336
        11.3.5 Rapid Rotation ................................. 338
   11.4 Centrifugal Convection of a Perfect Gas ............... 339
12 Control of Vortex Breakdown ................................ 342
   12.1 Introduction .......................................... 342
   12.2 Experimental Study of VB Control ...................... 344
        12.2.1 Experimental Setup and Technique ............... 344
        12.2.2 Co-rotation .................................... 346
        12.2.3 Counter-rotation ............................... 351
        12.2.4 Concluding Remarks ............................. 356
   12.3 Numerical Study of VB Control by Temperature
        Gradients ............................................. 357
        12.3.1 Problem Formulation ............................ 357
        12.3.2 Numerical Procedure ............................ 358
        12.3.3 Centrifugal Convection in a Rotating
               Container ...................................... 359
        12.3.4 Control of VB by Thermal Convection ............ 360
        12.3.5 Suppressing VB by Centrifugal Convection for
               Other Flow Configurations ...................... 367
        12.3.6 Effects of Gravitational Convection ............ 368
        12.3.7 Conclusions .................................... 368
   12.4 VB Control by Adding Near-Axis Swirl and Temperature
        Gradients ............................................. 369
        12.4.1 Vortex Breakdown Control by Adding Near-Axis
               Rotation ....................................... 369
        12.4.2 Near-Axis Rotation and Axial Temperature
               Gradient ....................................... 374
   12.5 Concluding Remarks .................................... 377
13 Magnetic Counterflows ...................................... 379
   13.1 Problem Formulation ................................... 379
        13.1.1 Governing Equations ............................ 379
        13.1.2 Bifurcation in a Planar Sink Flow .............. 380
        13.1.3 Reduction of the MHD Equations ................. 381
        13.1.4 Linear Problem for a Swirl-Free Flow ........... 382
   13.2 Magnetic Field Bifurcation in the Bipolar Accretion
        Flow .................................................. 383
        13.2.1 Flow Map ....................................... 383
        13.2.2 Nonlinear MHD Problem .......................... 383
        13.2.3 Asymptotic MHD Flow as Re → ∞ .................. 384
        13.2.4 Bifurcation of Magnetic Field in a Super-
               Collimated Flow ................................ 385
   13.3 Magnetic Field Bifurcation in the Bipolar Vortex-Sink
        Accretion Flow ........................................ 386
        13.3.1 Flow Map ....................................... 386
        13.3.2 Analytical Solution ............................ 388
        13.3.3 Development of Hysteresis ...................... 390
   13.4 Magnetic Field Bifurcation Near a Point Source
        of Heat and Gravity ................................... 390
        13.4.1 Linear Problem ................................. 390
        13.4.2 Super-Collimated Convection .................... 395
        13.4.3 MHD Bifurcation in the Super-Collimated
               Convection ..................................... 396
        13.4.4 Nonlinear MHD Problem .......................... 397
        13.4.5 Swirling MHD Flows ............................. 398
        13.4.6 Separated Branches of MHD Convection ........... 399
        13.4.7 Features of MHD Flows .......................... 401
   13.5 Instability Nature of MHD Bifurcation ................. 403
        13.5.1 Formulation of the Stability Problem ........... 403
        13.5.2 Linear Stability ............................... 404
        13.5.3 Nonlinear Stability ............................ 405
        13.5.4 Physical Interpretation ........................ 406
   13.6 Bifurcation of Magnetic Field in an Electro-Vortex
        Flow .................................................. 407
        13.6.1 Problem Formulation ............................ 407
        13.6.2 Bifurcation of the Meridional Induction ........ 408
        13.6.3 Bifurcation in the Super-Collimated Flow ....... 409
14 Stability of Conical Flows ................................. 411
   14.1 Formulation of the Stability Problem  ................. 411
        14.1.1 Transformation of Governing Equations .......... 411
        14.1.2 Equations for Infinitesimal Disturbances ....... 413
        14.1.3 Boundary Conditions ............................ 414
        14.1.4 Eigenvalue Problem ............................. 415
   14.2 Stability of the Fluid at Rest ........................ 416
        14.2.1 Modified Equations for Disturbances ............ 416
        14.2.2 Spectrum for the Unbounded Still Fluid ......... 416
        14.2.3 Spectrum for a Conical Region .................. 419
   14.3 Instability Nature of Folds and Hysteresis in
        Swirl-Free Jets ....................................... 421
        14.3.1 Multiple Flow States in Swirl-Free Jets ........ 421
        14.3.2 Fold-Catastrophe Instability ................... 423
        14.3.3 Space-Oscillatory Instability .................. 426
   14.4 Deceleration Instability of Jets ...................... 430
        14.4.1 Review of Stability Studies .................... 430
        14.4.2 Stability of Swirl-Free Jets ................... 431
   14.5 Instability of Swirling Jets .......................... 439
        14.5.1 Stability of One-Cell Flows .................... 439
        14.5.2 Stability of Two-Cell Flows .................... 442
   14.6 Instability Nature of Swirl Bifurcation ............... 445
        14.6.1 One-Phase Flow in a Capillary Meniscus ......... 445
        14.6.2 Two-Phase Flow ................................. 446
        14.6.3 Instability of the Flow Driven by Electric
               Current ........................................ 447
   14.7 Instability of Flows Diverging Near a Surface ......... 447
        14.7.1 Azimuthal Instability of the Squire-Wang
               Flow ........................................... 447
        14.7.2 Diverging Electro-Vortex Flow .................. 448
        14.7.3 Flow Near a Glacier ............................ 449
   14.8 Concluding Remarks .................................... 451
        14.8.1 Inner and Outer Modes .......................... 451
        14.8.2 The Role of Similarity ......................... 452
        14.8.3 Unsteadiness ................................... 453
        14.8.4 Deceleration Instability ....................... 453

References .................................................... 457
Index ......................................................... 467


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:20 2019. Размер: 26,373 bytes.
Посещение N 1570 c 10.09.2013