Argon A.S. The physics of deformation and fracture of polymers (Cambridge, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаArgon A.S. The physics of deformation and fracture of polymers. - Cambridge: Cambridge univ. press, 2013. - xxi, 511 p.: ill. - Bibliogr. at the end of the chapters. - Auth. ind.: p.501-506. - Sub. ind.: p.507-511. - ISBN 978-0-521-82184-1
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... xv
Symbols .................................................... xviii
Frequently used abbreviations ............................... xxii

1    Structure of non-polymeric glasses ........................ 1
1.1  Overview .................................................. 1
1.2  Glass formability in metallic alloys ...................... 3
1.3  Atomic packing in disordered metallic solids .............. 3
1.4  Energetic characterization of the structure of metallic 
     glasses ................................................... 7
     1.4.1  The atomic site stress tensor ...................... 7
     1.4.2  Calorimetry ........................................ 9
1.5  Free volume .............................................. 10
1.6  Viscosity of glass-forming liquids ....................... 14
1.7  Structural relaxations ................................... 16
     1.7.1  A computational model ............................. 16
     1.7.2  Kinetic models of structural relaxations in 
            metallic glasses .................................. 20
1.8  The distributed character of structural relaxations and
     the glass transition ..................................... 21
1.9  The dependence of the glass-transition temperature on 
     cooling rate ............................................. 25
1.10 Crystallization in bulk metallic glasses ................. 26
1.11 Deformation-induced alterations of atomic structure in 
     sub-cooled liquids and glasses ........................... 27
1.12 The range of metallic alloys that have been obtained as
     bulk metallic glasses .................................... 30
1.13 The structure of amorphous silicon ....................... 30
1.14 Characterization of the structure of amorphous silicon ... 32
     Suggested further reading on structure of non-polymeric 
     glasses .................................................. 36
     References ............................................... 37

2    Structure of solid polymers .............................. 40
2.1  Overview ................................................. 40
2.2  Structure of polymers .................................... 41
2.3  Molecular architecture ................................... 46
2.4  Molecular weight ......................................... 47
2.5  Structure of amorphous polymers .......................... 49
     2.5.1  Molecular-structure models of amorphous polymers .. 49
     2.5.2  Chemically specific molecular-structure models 
            of amorphous polymers ............................. 49
     2.5.3  Chemically non-specific models of amorphous
            polymer structure ................................. 53
     2.5.4  Experimental means of characterization of the
            structure of glassy polymers ...................... 54
2.6  Crystalline polymers ..................................... 54
     2.6.1  The fringed-micelle model of semi-crystalline 
            polymers .......................................... 54
     2.6.2  Spherulites ....................................... 55
     2.6.3  Hedrites .......................................... 58
     2.6.4  Polymer single crystals ........................... 58
     2.6.5  Crystallization from the melt and growth of 
            spherulites ....................................... 61
2.7  Defects in polymer crystals .............................. 66
     2.7.1  Overview .......................................... 66
     2.7.2  Chain defects ..................................... 67
     2.7.3  Lattice defects ................................... 71
2.8  Chain-extended polymers .................................. 71
     Suggested further reading on structure of solid 
     polymers ................................................. 72
     References ............................................... 73

3    Constitutive connections between stress and strain in
     polymers ................................................. 77
3.1  Overview ................................................. 77
3.2  Stresses and strains ..................................... 77
     3.2.1  Stresses .......................................... 77
     3.2.2  Strains ........................................... 78
3.3  Linear elasticity of polymers ............................ 81
3.4  Plasticity of polymers ................................... 83
     3.4.1  Generalized yield conditions ...................... 83
     3.4.2  The associated-flow rule .......................... 85
3.5  Thermally activated deformation .......................... 87
     References ............................................... 89

4    Small-strain elastic response ............................ 90
4.1  Overview ................................................. 90
4.2  Small-strain elasticity in crystals ...................... 91
     4.2.1  The generalized Hooke's law ....................... 91
     4.2.2  Orthorhombic crystals or orthotropic solids ....... 93
     4.2.3  Hexagonal crystals ................................ 93
     4.2.4  Cubic crystals .................................... 93
     4.2.5  Isotropic materials ............................... 93
     4.2.6  Temperature and strain dependence of elastic 
            response .......................................... 95
4.3  Theoretical determination of elastic constants of 
     polymers ................................................. 96
     4.3.1  Glassy polymers ................................... 96
     4.3.2  Crystalline polymers .............................. 97
4.4  Elastic response of textured anisotropic polymers ....... 102
4.5  Elastic properties of heterogeneous polymers ............ 104
     4.5.1  Methods of estimating the elastic properties of
            heterogeneous polymers ........................... 104
     4.5.2  The self-consistent method ....................... 105
     4.5.3  The Eshelby inclusion method ..................... 106
     References .............................................. 109

5    Linear viscoelasticity of polymers ...................... 112
5.1  Introduction ............................................ 112
5.2  Phenomenological formalisms of viscoelasticity .......... 112
     5.2.1  Uniaxial creep or stress-relaxation response ..... 112
     5.2.2  Dynamic relaxation response ...................... 116
     5.2.3  Temperature dependence of viscoelastic 
            relaxations ...................................... 118
5.3  Viscoelastic relaxations in amorphous polymers .......... 120
     5.3.1  The α-relaxation ................................. 120
     5.3.2  The free-volume model of the α-relaxation ........ 122
     5.3.3  Dependence of the α-relaxation on the chemical 
            structure of molecules ........................... 126
     5.3.4  Secondary relaxations in the glassy regime ....... 127
     5.3.5  Effect of physical aging on the relaxation
            spectra of polymers .............................. 130
     5.3.6  Secondary relaxations in polycarbonate of 
            bisphenol-A ...................................... 132
5.4  Shear relaxations in partially crystalline polymers ..... 139
5.5  Some problems of viscoelastic-stress analysis ........... 143
5.6  Non-linear viscoelasticity .............................. 145

6    Suggested further reading on linear viscoelasticity of
     polymers ................................................ 146
     References .............................................. 146
     Rubber elasticity ....................................... 148
6.1  Overview ................................................ 148
6.2  Molecular characteristics of rubbers .................... 149
     6.2.1  Distinctive features of rubbers .................. 149
     6.2.2  The chemical constitution of rubbers ............. 151
6.3  Thermodynamics of rubbery behavior ...................... 151
6.4  The Gaussian statistical model of rubber elasticity ..... 155
6.5  The non-Gaussian statistical model of rubber 
     elasticity .............................................. 159
     6.5.1  The freely jointed single chain .................. 159
     6.5.2  Langevin networks ................................ 161
     6.5.3  Comparison of the Langevin-network model with 
            experiments ...................................... 164
6.6  Modes of deformation in rubber elasticity ............... 167
     6.6.1  Conditions for general response .................. 167
     6.6.2  Uniaxial tension or compression .................. 167
     6.6.3  Equi-biaxial stretch ............................. 168
     6.6.4  Plane-strain tension and pure shear .............. 168
     6.6.5  Simple shear ..................................... 169
     6.6.6  Plane-strain compression flow in a channel die ... 171
6.7  Gaussian rubbery-type response in glassy polymers ....... 172
     References .............................................. 172

7    Inelastic behavior of non-polymeric glasses ............. 174
7.1  Overview ................................................ 174
7.2  The mechanism of plasticity in non-polymeric glasses .... 175
7.3  The kinematics of plasticity in glassy solids by shear
     transformations ......................................... 176
7.4  Nucleation of shear transformations under stress ........ 179
     7.4.1  The elastic strain energy of a shear
            transformation in the unstressed solid ........... 179
     7.4.2  The Gibbs free energy of nucleation of the
            shear transformation under stress ................ 180
     7.4.3  Stages in the nucleation of the shear 
            transformation ................................... 181
7.5  Yielding in metallic glasses ............................ 185
     7.5.1  Behavior at low temperatures (T << Tg) ........... 185
     7.5.2  Temperature dependence of the yield stress
            (T << Tg) ........................................ 187
     7.5.3  Analysis of the experimental results on yield
            behavior of metallic glasses at low 
            temperatures ..................................... 188
     7.5.4  Yielding in metallic glasses at temperatures 
            close to Tg ...................................... 189
     7.5.5  Changing kinetics of plasticity near Tg .......... 193
7.6  Post-yield large-strain plastic response of glassy 
     solids: strain softening and strain hardening ........... 199
     7.6.1  Features of large-strain plastic flow of glassy 
            solids ........................................... 199
     7.6.2  Plastic-flow-induced increase in the liquid-
            like material fraction, φ ........................ 200
     7.6.3  Plastic-strain-induced changes in structure and 
            the kinetics of associated evolutions of φ ....... 203
     7.6.4  Kinetics of large-strain plastic flow of
            glasses at T << Tg .............................. 205
     7.6.5  Kinetics of large-strain plastic flow of 
            glasses at T close to Tg ......................... 207
     7.6.6  Multi-axial deformation: correspondences of
            shear, tension, and compression at low
            temperatures ..................................... 210
7.7  The strength-differential effect in disordered solids ... 213
7.8  Shear localization ...................................... 216
     7.8.1  The phenomenology of shear localization in
            metallic glasses ................................. 216
     7.8.2  The mechanics of shear localization .............. 217
     7.8.3  Temperature rises associated with shear 
            localization ..................................... 220
     7.8.4  The flow state ................................... 221
     Appendix. Plastic-floor-induced structural 
            alterations: the relation between flow 
            dilatations of free volume and liquid-like
            material ......................................... 222
     References .............................................. 224

8    Plasticity of glassy polymers ........................... 228
8.1  Overview ................................................ 228
8.2  The rheology of glassy polymers ......................... 229
     8.2.1  Important provisos ............................... 229
     8.2.2  The phenomenology of plastic flow in glassy 
            polymers ......................................... 230
8.3  The mechanism of plastic flow in glassy polymers ........ 234
     8.3.1  Computer simulation of plastic flow .............. 234
     8.3.2  Simulation results in polypropylene .............. 236
     8.3.3  Simulation results in polycarbonate .............. 238
8.4  Temperature dependence of yield stresses of glassy 
     polymers ................................................ 243
8.5  The kinetic model of plastic yield in glassy polymers ... 243
     8.5.1  Temperature dependence of the plastic 
            resistance ....................................... 243
     8.5.2  The thermal activation parameters ................ 247
     8.5.3  A kinetic model of flow of linear-chain glassy 
            polymers ......................................... 248
8.6  Large-strain plastic flow in glassy polymers ............ 249
     8.6.1  Development of post-yield large-strain plastic
            flow ............................................. 249
     8.6.2  A model for post-yield plastic flow of glassy 
            polymers ......................................... 254
     8.6.3  Stored energy and Bauschinger back strains ....... 258
     8.6.4  The strength-differential effect and the multi-
            axial yield condition ............................ 259
8.7  Strain hardening in glassy polymers ..................... 262
8.8  Comparison of experiments and simulations on the
     yielding and large-strain plastic flow of glassy
     polymers ................................................ 264
     References .............................................. 270

9    Plasticity of semi-crystalline polymers ................. 273
9.1  Overview ................................................ 273
9.2  Mechanisms of plastic deformation ....................... 274
9.3  Plasticity of two semi-crystalline polymers: high-
     density polyethylene (HDPE) and polyamide-6 (Nylon-6) ... 276
     9.3.1  Methodology of deformation ....................... 276
     9.3.2  Plastic strain-induced alterations of 
            spherulite morphology in Nylon-6 in uniaxial 
            tension .......................................... 277
     9.3.3  Large-strain plastic flow in HDPE in 
            plane-strain compression ......................... 280
     9.3.4  Large-strain plastic flow in monoclinic Nylon-6
            by plane-strain compression ...................... 291
     9.3.5  Measurement of critical resolved shear stresses
            in textured HDPE and Nylon-6 and their 
            normal-stress dependence ......................... 292
9.4  The kinetics of plastic flow in semi-crystalline 
     polymers ................................................ 295
     9.4.1  Modes of dislocation nucleation in lamellae ...... 298
     9.4.2  The strain-rate expression ....................... 301
     9.4.3  The dominant nucleation mode ..................... 303
     9.4.4  Activation volumes ............................... 304
     9.4.5  Temperature dependence of the plastic 
            resistance ....................................... 307
9.5  Simulation of plastic-strain-induced texture 
     development in HDPE ..................................... 309
     9.5.1  Characteristics of the simulation ................ 309
     9.5.2  Basic assumptions of the model ................... 309
     9.5.3  Constitutive relations ........................... 311
     9.5.4  Composite inclusion .............................. 315
     9.5.5  Interaction law and solution procedure ........... 315
     9.5.6  Parameter selection in the model ................. 316
     9.5.7  Predicted results of the composite model and 
            comparison with experiments ...................... 317
     Suggested further reading on plasticity of semi-
     crystalline polymers .................................... 321
     References .............................................. 321

10   Deformation instabilities in extensional plastic flow
     of polymers ............................................. 325
10.1 Overview ................................................ 325
10.2 Deformation instabilities in extensional plastic flow 
     of polymers ............................................. 325
10.3 Conditions for impending localization in extensional 
     deformation ............................................. 326
     10.3.1  Basic shear response ............................ 326
     10.3.2  Basic extensional response ...................... 328
10.4 Stability of extensional plastic flow ................... 331
10.5 The effect of strain-rate sensitivity on stability in 
     extensional plastic flow ................................ 333
     10.5.1 In the onset of necking .......................... 333
     10.5.2 In the post-necking behavior ..................... 335
10.6 Plastic drawing of polymers ............................. 336
     References .............................................. 341

11   Crazing in glassy homo- and hetero-polymers ............. 342
11.1 Overview ................................................ 342
11.2 The phenomenology of crazing in glassy homo-polymers .... 343
11.3 Simulation of cavitation in a glassy polymer at the 
     atomic level ............................................ 345
11.4 Craze initiation ........................................ 347
     11.4.1 Experimental observations ........................ 347
     11.4.2 Intrinsic crazing ................................ 349
     11.4.3 Tension-torsion experiments ...................... 349
11.5 A craze-initiation model ................................ 353
11.6 Comparison of the predictions of the craze-initiation 
     model with experiments .................................. 356
11.7 Craze growth ............................................ 359
     11.7.1 Craze stresses ................................... 359
     11.7.2 Craze microstructure ............................. 364
     11.7.3 Craze-growth experiments ......................... 366
11.8 A craze-growth model .................................... 368
11.9 Comparison of the craze-growth model with experiments ... 374
11.10 Crazing in block copolymers ............................ 376
     11.10.1 Morphology of diblock copolymers ................ 376
     11.10.2 Crazing experiments in PS/PB diblock 
             copolymers ...................................... 378
     11.10.3 A model of craze growth in a PS/PB diblock
             copolymer with spherical PB domains ............. 381
     11.10.4 Comparison of the predictions of the craze-
             growth model in PS/PB diblock copolymers with
             experiments ..................................... 385
     References .............................................. 387

12   Fracture of polymers .................................... 391
12.1 Overview ................................................ 391
12.2 Cracks and fracture ..................................... 391
     12.2.1 Two complementary perspectives in crack 
            mechanics ........................................ 391
     12.2.2 Cracks in LEFM ................................... 392
     12.2.3 The energy-release rate G\ in LEFM with crack 
            extension ........................................ 396
12.3 Cracks with plastic zones ............................... 398
     12.3.1 Pervasiveness of plasticity at the crack tip ..... 398
     12.3.2 Cracks with small-scale yielding (SSY) ........... 399
     12.3.3 Crack-tip fields with contained plasticity ....... 404
     12.3.4 Crack fields in fully developed plasticity ....... 407
12.4 Stability of crack advance .............................. 414
12.5 Intrinsic brittleness of polymers ....................... 416
12.6 Brittle-to-ductile transitions in fracture .............. 418
12.7 Mechanisms and forms of fracture in polymers ............ 419
     12.7.1 The crack-tip process zone ....................... 419
     12.7.2 The role of chain scission in polymer fracture ... 419
     12.7.3 Fracture of unoriented polymers .................. 420
     12.7.4 Cohesive separation .............................. 420
     12.7.5 Fracture in glassy polymers involving crazing .... 422
     12.7.6 Molecular-scission-controlled fracture of 
            oriented semi-crystalline polymers ............... 425
     12.7.7 Fracture toughnesses of a selection of polymers .. 428
12.8 Impact fracture of polymers ............................. 429
     12.8.1 Application of fracture mechanics to impact 
            fracture ......................................... 429
     12.8.2 Fracture of polymers at high strain rate ......... 431
     12.8.1 Suggested further reading on fracture of 
            polymers ......................................... 432
     References .............................................. 433

13   Toughening of polymers .................................. 435
13.1 Overview ................................................ 435
13.2 Strategies of toughening of polymers .................... 436
13.3 Different manifestations of toughness in polymers ....... 437
13.4 The generic fracture response of polymers in uniaxial 
     tension ................................................. 438
13.5 Toughening of crazable glassy polymers by compliant 
     particles ............................................... 440
     13.5.1 Types of compliant composite particles ........... 440
     13.5.2 Brittleness of glassy homo-polymers and 
            alleviating it through craze plasticity .......... 443
     13.5.3 The mechanism of toughening in particle-
            modified crazable glassy polymers ................ 445
     13.5.4 Elasticity of compliant particles ................ 447
     13.5.5 Craze initiation from compliant particles and
            the craze-flow stress ............................ 449
     13.5.6 The role of compliant-particle size in
            toughening glassy polymers ....................... 449
     13.5.7 A model for the craze-flow stress of particle-
            toughened polystyrene ............................ 452
     13.5.8 Special HIPS blends prepared to evaluate the
            toughening model ................................. 454
     13.5.9 Comparison of the behavior of special HIPS 
            blends with model predictions .................... 457
13.6 Diluent-induced toughening of glassy polymers ........... 459
     13.6.1 Different manifestations of toughening with
            diluents ......................................... 459
     13.6.2 Factors affecting diluent toughening of PS ....... 462
     13.6.3 A model of diluent-induced toughening of glassy
            polymers ......................................... 465
     13.6.4 Comparison of the diluent-induced-toughening
            model with experiments ........................... 472
13.7 Toughening of semi-crystalline polymers ................. 475
     13.7.1 Toughness of unmodified HDPE and polyamides of
            Nylon-6 and -66 .................................. 475
     13.7.2 Toughening semi-crystalline polymers by
            particle modification ............................ 477
13.8 Toughening of brittle thermosetting polymers ............ 492
     References .............................................. 497

Author index ................................................. 501
Subject index ................................................ 507


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:56 2019. Размер: 28,203 bytes.
Посещение N 1183 c 14.10.2014