Навигация
Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLiang Sh.-D. Quantum tunneling and field electron emission theories. - Singapore: World scientific, 2014. - xx, 387 p.: ill. - Bibliogr.: p.375-383. - Ind.: p.385-387. - ISBN 978-981-4440-21-9
Шифр: (И/В31-L66)02
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... vii

1  Introduction ................................................. 1

Quantum Tunneling Theory ........................................ 5

2  Quantum Physics and Quantum Formalism ........................ 7
   2.1  Quantum Phenomena ....................................... 7
   2.2  Quantum Characteristics ................................. 7
   2.3  Quantum Formalism ....................................... 8
   2.4  Probability Current and Current Conservation ........... 14
   2.5  Quantum Physics versus Classical Physics ............... 16
   2.6  Mesoscopic Physics and Characteristic Length ........... 18
        2.6.1  Characteristic Length ........................... 18
        2.6.2  Characteristic Transports ....................... 20
   2.7  Mathematics in Classical and Quantum Worlds ............ 21
3  Basic Physics of Quantum Scattering and Tunneling ........... 23
   3.1  Definitions of Quantum Scattering and Tunneling ........ 23
   3.2  Description of Quantum Scattering and Tunneling ........ 24
   3.3  Basic Physical Quantities in Quantum Tunneling ......... 26
        3.3.1  Transmission and Reflection Coefficients ........ 26
        3.3.2  Conductance: Landauer-Bьttiker Formula .......... 26
        3.3.3  Charge Current .................................. 27
   3.4  Relationships between Transmission Coefficient and
        Scattering Matrix ...................................... 27
   3.5  Basic Properties of Scattering and Transfer Matrices ... 29
   3.6  Constraints of Scattering and Transfer Matrices ........ 35
4  Wave Function Matching Method ............................... 37
   4.1  Square Barrier Model ................................... 38
   4.2  Asymmetric Square Barrier Model ........................ 40
   4.3  Double Square Barrier Model ............................ 43
   4.4  Multi-Mode Square Barrier Model ........................ 45
   4.5  Triangle Barrier ....................................... 47
   4.6  Lattice Models ......................................... 51
        4.6.1  One-dimensional Model ........................... 51
        4.6.2  Two-chain Model ................................. 54
        4.6.3  2D Square Lattice ............................... 58
5  WKB Method .................................................. 61
   5.1  Mathematics of WKB Method .............................. 61
   5.2  Validity ............................................... 63
   5.3  Solution of Schrцdinger Equation ....................... 63
   5.4  Quantum Tunneling ...................................... 64
   5.5  Triangle Barrier ....................................... 65
   5.6  Triangle and Image Potential Barrier ................... 67
6  Lippmann-Schwinger Formalism ................................ 71
   6.1  Lippmann-Schwinger Equation ............................ 71
   6.2  Wave Function and S Matrix ............................. 73
   6.3  Green's Function and T Matrix .......................... 74
   6.4  S Matrix ............................................... 76
   6.5  Adiabatic Transport Model .............................. 77
   6.6  Quantum Tunneling in Time-Dependent Barrier ............ 79
        6.6.1  Floquet Theory .................................. 79
        6.6.2  Time-Dependent Barrier .......................... 80
7  Non-Equilibrium Green's Function Method ..................... 83
   7.1  Basic Physics of Non-Equilibrium Transport Problems .... 83
   7.2  Model of Nanodevices ................................... 84
   7.3  Green's Functions and Self-Energy ...................... 86
   7.4  Spectral Function, Density of States, and Correlation
        Function ............................................... 88
   7.5  Definitions and Relationships .......................... 90
   7.6  Current ................................................ 91
   7.7  Tunneling Model and Master Equation .................... 93
8  Spin Tunneling .............................................. 97
   8.1  Tunneling Magnetoresistance Phenomena .................. 97
   8.2  Julliere Model ......................................... 98
   8.3  Giant Magnetoresistance ............................... 101
   8.4  Spin Tunneling in Spin-Orbital Coupling
        Semiconductors ........................................ 102
        8.4.1  Model and Issue ................................ 102
        8.4.2  Ferromagnetic Nanowires ........................ 104
        8.4.3  Spin-Orbital Coupling Semiconductor ............ 106
   8.5  Spin Polarization ..................................... 110
   8.6  Remarks ............................................... 117
9  Applications ............................................... 119
   9.1  Josephson Effect ...................................... 119
   9.2  Theory of Scanning Tunneling Microscopy ............... 121
        9.2.1  Quantum Electron Tunneling and Bardeen's
               Formula ........................................ 122
        9.2.2  Tersoff-Hamann Formula ......................... 123
        9.2.3  Non-Equilibrium Green's Function Method ........ 125
   9.3  Conductance of Graphene ............................... 125
        9.3.1  Graphene Nanoribbons Model ..................... 127
        9.3.2  Impurity Effects ............................... 128
        9.3.3  Vacancy and Impurity ........................... 130
        9.3.4  Conclusion ..................................... 131
   9.4  Charge Transfer in DNA ................................ 132
        9.4.1  G4-DNA Model ................................... 133
        9.4.2  TG4 and Their Classifications .................. 135
        9.4.3  Anomalous Conductance in NCM(H)TG4 ............. 136
        9.4.4  Topological Structure Transition versus
               Telomerase Activation and Inhibition ........... 138
        9.4.5  Conclusion ..................................... 139
   9.5  Remarks ............................................... 140

Field Electron Emission Theory ................................ 141

10 Introduction ............................................... 143
   10.1 Field Electron Emission Phenomenon .................... 143
   10.2 Brief Histroy of Field Electron Emission .............. 143
   10.3 Basic Concepts of Field Electron Emission ............. 144
        10.3.1 Electron Emissions from Solids ................. 144
        10.3.2 Work Function and Field Emission Condition ..... 145
        10.3.3 Basic Experiment Components of Field
               Emission ....................................... 145
        10.3.4 Applications of Field Emission ................. 146
   10.4 Basic Issues of Field Electron Emission ............... 146
        10.4.1 Theoretical Issues ............................. 146
        10.4.2 Engineering Issues ............................. 147
   10.5 Novel Phenomena and Challenges of Field Emission ...... 148
        10.5.1 New Phenomena .................................. 148
        10.5.2 Challenging Problems ........................... 149
11 Theoretical Model and Methodology .......................... 151
   11.1 Theoretical Model of Field Emission ................... 151
   11.2 Theoretical Methodology ............................... 152
        11.2.1 Model and Analytic Solution .................... 153
        11.2.2 Computer Simulation ............................ 153
        11.2.3 Empirical Method ............................... 153
   11.3 Remarks ............................................... 153
12 Fowler-Nordheim Theory ..................................... 157
   12.1 Assumptions of Fowler-Nordheim Theory ................. 157
   12.2 Fowler-Nordheim Theory ................................ 158
        12.2.1 Field Emission Equation I: Fowler-Nordheim
               Method ......................................... 160
        12.2.2 Field Emission Equation II: Young-Gadzuk's
               Method ......................................... 163
        12.2.3 Field Emission Equation III: R. Forbes'
               Method ......................................... 164
        12.2.4 Field Emission Equation VI: A. Haug's Method ... 166
   12.3 Remarks ............................................... 167
   12.4 Beyond Triangular Vacuum Potential Barrier ............ 168
        12.4.1 General Formalism .............................. 169
        12.4.2 Generalized Triangular Barrier ................. 171
        12.4.3 Schottky-Nordheim Barrier: Image Potential
               Effect ......................................... 172
        12.4.4 Beyond Gamow Exponent Form ..................... 175
        12.4.5 Emitter Curvature and Field Enhancement
               Factor ......................................... 175
        12.4.6 Space Charge Effect ............................ 176
        12.4.7 Small-Scale Effect of Emitter .................. 178
        12.4.8 Emission Area and Total Emission Current ....... 178
   12.5 Energy Band Effect .................................... 178
        12.5.1 Supply Function Density ........................ 179
        12.5.2 Transmission Coefficient and Total Energy
               Distribution ................................... 179
        12.5.3 Emission Current Density ....................... 181
   12.6 Finite Temperature Effect ............................. 182
   12.7 Basic Characteristic of Current-Field Relation ........ 184
        12.7.1 Current-Field Characteristic ................... 184
        12.7.2 Maximum Emission Current Density ............... 185
        12.7.3 FN Plot ........................................ 186
   12.8 Energy Distribution of Emission Electrons ............. 191
        12.8.1 Total Energy Distribution (TED) ................ 191
        12.8.2 Normal Energy Distribution (NED) ............... 193
        12.8.3 Basic Characteristics of TED and NED ........... 194
        12.8.4 Measurement of Energy Distributions ............ 202
   12.9 Nottingham Effect ..................................... 204
13 Field Emission from Semiconductors ......................... 209
   13.1 Basic Properties of Semiconductors .................... 210
        13.1.1 Energy Band Structure .......................... 210
        13.1.2 Temperature Dependence of Energy Band Gap ...... 210
        13.1.3 Carrier Concentration .......................... 211
   13.2 Model of Field Emission from Semiconductors ........... 212
   13.3 Supply Function Density ............................... 213
   13.4 Vacuum Potential Barrier and Transmission
        Coefficient ........................................... 213
   13.5 Total Energy Distribution ............................. 215
   13.6 Basic Characteristics of Total Energy Distribution .... 217
   13.7 Emission Current Density .............................. 218
14 Surface Effects and Resonance .............................. 221
   14.1  Field Emission Model with Surface Effects ............ 221
   14.2 Double-Barrier Vacuum Potential and Transmission
        Coefficient ........................................... 222
   14.3 Total Energy Distribution ............................. 226
   14.4 Emission Current Density .............................. 227
15 Thermionic Emission Theory ................................. 231
   15.1 The Richardson Theory of Thermionic Emission .......... 231
   15.2 Boundary of Field Emission and Thermionic Emission .... 233
16 Theory of Dynamical Field Emission ......................... 237
   16.1 Adiabatic Process and Dynamic Field Emission Model .... 237
   16.2 Supply Function and Time-Dependent Transmission
        Coefficient ........................................... 238
   16.3 Dynamic Total Energy Distribution ..................... 239
   16.4 Dynamic Normal Energy Distribution .................... 240
   16.5 Dynamic Emission Current .............................. 241
   16.6 Quantum Tunneling Time ................................ 242
17 Theory of Spin Polarized Field Emission .................... 247
   17.1 Basic Physics of Spin Polarized Field Emission ........ 247
   17.2 Energy Band Spin-Split Model .......................... 249
        17.2.1 Supply Function and Transmission Coefficient ... 249
        17.2.2 Total Energy Distribution ...................... 250
        17.2.3 Normal Energy Distribution ..................... 251
        17.2.4 Emission Current Density and Spin
               Polarization ................................... 252
   17.3 Spin-Dependent Triangular Potential Barrier Model ..... 254
        17.3.1 Spin-dependent Triangular Potential Barrier
               and Transmission Coefficient ................... 254
        17.3.2 Total Energy Distribution: ..................... 256
        17.3.3 Normal Energy Distribution: .................... 256
        17.3.4 Emission Current Density and Spin
               Polarization ................................... 257
   17.4 Spin-Dependent Image Potential Barrier Model .......... 259
        17.4.1 Spin-dependent Image Potential Barrier and
               Transmission Coefficient ....................... 259
        17.4.2 Total and Normal Energy Distributions .......... 260
        17.4.3 Emission Current Density and Spin
               Polarization ................................... 261
   17.5 Finite Temperature Effects ............................ 263
        17.5.1  Energy-Band Spin-Split Model .................. 263
        17.5.2 Spin-Dependent Triangular Potential Barrier
               Model .......................................... 264
        17.5.3 Spin-Dependent Image Potential Barrier Model ... 264
   17.6 Comparison of Spin Polarizations ...................... 265
   17.7 A Scheme of Pure Spin Polarized Electron Emission
        Induced by Quantum Spin Hall Effect ................... 266
   17.8 Difficulties and Possibilities of Spin Polarized
        Field Emission ........................................ 268
18 Theory of Field Electron Emission from Nanomaterials ....... 271
   18.1 Basic Physics of Field Emission from Nanoemitters ..... 271
   18.2 Formulation of Field Emission Current Density ......... 273
        18.2.1 Supply Function Density ........................ 274
        18.2.2 Current Density ................................ 274
        18.2.3 Density of States .............................. 274
        18.2.4 Transmission Coefficient ....................... 274
        18.2.5 Distribution Function .......................... 278
        18.2.6 Total Energy Distribution ...................... 278
        18.2.7 Emission Current Density ....................... 279
   18.3 Computational Framework ............................... 279
   18.4 Special Case I: Sommerfeld Model ...................... 280
   18.5 Special Case II: Nanowires ............................ 280
   18.6 Special Case III: Coupled Nanowires ................... 284
   18.7 Thermionic Emission of Nanowires ...................... 290
   18.8 Theory of Field Electron Emission from Carbon
        Nanotubes ............................................. 292
        18.8.1 Energy Dispersion and Density of States ........ 293
        18.8.2 Density of States and Group Velocity ........... 293
        18.8.3 Supply Function and Transmission Coefficient ... 294
        18.8.4 Total Energy Distribution ...................... 295
        18.8.5 Emission Current Density ....................... 295
        18.8.6 Finite Temperature Effect ...................... 301
        18.8.7 Thermionic Emission ............................ 301
   18.9 Theory of Luttinger Liquid Field Emission ............. 303
19 Computer Simulations of Field Emission ..................... 305
   19.1  Basic Idea on Computer Simulation .................... 305
   19.2 Formulation of Field Emission Based on Non-
        Equilibrium Green's Function Method ................... 306
        19.2.1 Generalized Supply Function .................... 307
        19.2.2 Transmission Coefficient ....................... 308
        19.2.3 Total Energy Distribution and Emission
               Current Density ................................ 308
   19.3 Tight-Binding Approach ................................ 309
        19.3.1 Computational Formulation ...................... 309
        19.3.2 Carbon Nanotubes ............................... 310
        19.3.3 Total Energy Distribution and Emission
               Current ........................................ 312
        19.3.4 Computational Framework ........................ 313
        19.3.5 Basic Properties of Field Emission of SWCN ..... 314
   19.4 Cap and Doping Effects ................................ 319
   19.5 Field Penetration Effect and Field Enhancement
        Factor ................................................ 320
   19.6 First-Principle Method ................................ 321
        19.6.1 The Multi-Scale Technique ...................... 321
        19.6.2 The ab-initio Tight-Binding Method ............. 322
        19.6.3 Lippman-Schwinger Scattering Formalism ......... 322
20 The Empirical Theory of Field Emission ..................... 323
   20.1 The Empirical Theory of Field Emission ................ 323
   20.2 The Generalized Empirical Theory of Field Emission .... 324
   20.3 The Empirical Theory of Thermionic Emission ........... 325
   20.4 Connection between Empirical Theory and Experimental
        Data .................................................. 325
21 Fundamental Physics of Field Electron Emission ............. 327
   21.1 Field Emission Behavior and Material Properties ....... 327
   21.2 Equilibrium and Non-Equilibrium Currents .............. 328
   21.3 Many-Body Effect ...................................... 329
   21.4 Coherent and Non-Coherent Emission Currents ........... 330
   21.5 Electron Emission Mechanism: Nano versus Bulk
        Effects ............................................... 330
   21.6 Universality versus Finger Effects .................... 331
   21.7 Open Problems and Difficulties ........................ 332
   21.8 Perspectives .......................................... 333
Appendix A  Appendices ........................................ 335
   A.1  Basic Properties of S and M Matrices .................. 335
        A.1.1  Proof of Theorem 3.5 ........................... 335
        A.1.2  Proof of Theorem 3.7 ........................... 336
        A.1.3  Proof of Theorem 3.8 ........................... 336
        A.1.4  Proof of Theorem 3.9 ........................... 338
   A.2  Spin Tunneling ........................................ 340
        A.2.1  Proof of Claim 8.1b and Claim 8.2b ............. 340
        A.2.2  Proof of Claim 8.2 ............................. 341
        A.2.3  Proof of Theorem 8.1 ........................... 341
        A.2.4  Proof of Theorem 8.2 ........................... 342
        A.2.5  Proof of Theorem 8.3 ........................... 343
   A.3  Derivations in Non-Equilibrium Green's Function
        Method ................................................ 343
        A.3.1  Basic Relationships ............................ 343
        A.3.2  Non-Equilibrium Current ........................ 344
   A.4  Models of Solids ...................................... 346
        A.4.1  Sommerfeld Model of Metals ..................... 346
        A.4.2  Crystal Lattice Model and Bloch Theorem ........ 348
        A.4.3  Tight-Binding Model ............................ 349
        A.4.4  Remarks of Solid Model ......................... 351
   A.5  Density of States ..................................... 351
        A.5.1  Definition of Density of States ................ 351
        A.5.2  Sommerfeld Model (Electron Gas) ................ 351
        A.5.3  Beyond Sommerfeld Model ........................ 352
        A.5.4  Non-Equilibrium Cases .......................... 353
   A.6  Fermi Wave Vector and Fermi Wavelength ................ 354
        A.6.1  Definitions of Fermi Wave Vector and Fermi
               Wavelength ..................................... 354
        A.6.2  Sommerfeld Model ............................... 355
   A.7  The Widths of TED and NED ............................. 356
        A.7.1  TED ............................................ 356
        A.7.2  NED ............................................ 357
   A.8  Spin Polarized Field Emission ......................... 358
   A.9  Field Emission from Nanomaterials ..................... 360
        A.9.1  Nanowire Integration ........................... 360
        A.9.2  Coupled Nanowire ............................... 361
   A.10 Carbon Nanotubes ...................................... 363
        A.10.1 Graphene ....................................... 363
        A.10.2 Lattice Structure of Single-Wall Carbon
               Nanotubes (SWCN) ............................... 364
        A.10.3 Unit Cell and Brillouin Zone of SWCN ........... 365
        A.10.4 Energy Dispersion Relation of SWCN ............. 366
        A.10.5 Energy Gap ..................................... 367
        A.10.6 Density of States of SWCN ...................... 368
        А.10.7 Multi-Wall Carbon Nanotubes (MWCN) ............. 368
   A.ll Physical Constants .................................... 371
   A.12 Field Emission Constants .............................. 372
   A.13 Epilogue .............................................. 373

Bibliography .................................................. 375
Index ......................................................... 385

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2017 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Fri Jan 20 12:35:25 2017. Размер: 24,371 bytes.
Посещение N 364 c 12.01.2016