Venables J. Introduction to surface and thin film processes (Cambrige; New York, 2000). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVenables J. Introduction to surface and thin film processes. - Cambrige; New York: Cambridge University Press, 2000. - xvi, 372 p.: ill. - Ref.: p.331-361. - Ind.: p.363-372. - ISBN 978-0-521-78500-6
Шифр: (И/K2-V38) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
 
Preface ........................................................ xi

Chapter 1  Introduction to surface processes .................... 1
1.1  Elementary thermodynamic ideas of surfaces ................. 1
     1.1.1  Thermodynamic potentials and the dividing surface ... 1
     1.1.2  Surface tension and surface energy .................. 3
     1.1.3  Surface energy and surface stress ................... 4
1.2  Surface energies and the Wulff theorem ..................... 4
     1.2.1  General considerations .............................. 5
     1.2.2  The terrace-ledge-kink model ........................ 5
     1.2.3  Wulff construction and the forms of small crystals .. 7
1.3  Thermodynamics versus kinetics ............................. 9
     1.3.1  Thermodynamics of the vapor pressure ............... 11
     1.3.2  The kinetics of crystal growth ..................... 15
1.4  Introduction to surface and adsorbate reconstructions ..... 19
     1.4.1  Overview ........................................... 19
     1.4.2  General comments and notation ...................... 20
     1.4.3  Examples of (1×1) structures ....................... 22
     1.4.4  Si(001) (2×1) and related semiconductor 
            structures ......................................... 24
     1.4.5  The famous 7×7 structure of Si(111) ................ 27
     1.4.6  Various 'root-three' structures .................... 28
     1.4.7  Polar semiconductors, such as GaAs(111) ............ 28
     1.4.8  Ionic crystal structures, such as NaCl, CaF2, MgO
            or alumina ......................................... 30
1.5  Introduction to surface electronics ....................... 30
     1.5.1  Work function, φ ................................... 30
     1.5.2  Electron affinity, χ and ionization potential Φ .... 30
     1.5.3  Surface states and related ideas ................... 31
     1.5.4  Surface Brillouin zone ............................. 32
     1.5.5  Band bending, due to surface states ................ 32
     1.5.6  The image force .................................... 32
     1.5.7  Screening .......................................... 33
     Further reading for chapter 1 ............................. 33
     Problems for chapter 1 .................................... 33

Chapter 2  Surfaces in vacuum: ultra-high vacuum techniques 
and processes .................................................. 36
2.1  Kinetic theory concepts ................................... 36
     2.1.1  Arrival rate of atoms at a surface ................. 36
     2.1.2  The molecular density, n ........................... 37
     2.1.3  The mean free path, λ .............................. 37
     2.1.4  The monolayer arrival time, τ ...................... 38
2.2  Vacuum concepts ........................................... 39
     2.2.1  System volumes, leak rates and pumping speeds ...... 39
     2.2.2  The idea of conductance ............................ 41
     2.2.3  Measurement of system pressure ..................... 42
2.3  UHV hardware: pumps, tubes, materials and pressure
     measurement ............................................... 42
     2.3.1  Introduction: sources of information ............... 42
     2.3.2  Types of pump ...................................... 43
     2.3.3  Chambers, tube and flange sizes .................... 44
     2.3.4  Choice of materials ................................ 45
     2.3.5  Pressure measurement and gas composition ........... 46
2.4  Surface preparation and cleaning procedures: in situ 
     experiments ............................................... 47
     2.4.1  Cleaning and sample preparation .................... 47
     2.4.2  Procedures for in situ experiments ................. 50
     2.4.3  Sample transfer devices ............................ 51
     2.4.4  From laboratory experiments to production 
            processes .......................................... 52
2.5  Thin film deposition procedures: sources of information ... 54
     2.5.1  Historical descriptions and recent compilations .... 54
     2.5.2  Thermal evaporation and the uniformity of 
            deposits ........................................... 54
     2.5.3  Molecular beam epitaxy and related methods ......... 57
     2.5.4  Sputtering and ion beam assisted deposition ........ 57
     2.5.5  Chemical vapor deposition techniques ............... 59
     Further reading for chapter 2 ............................. 60
     Problems for chapter 2 .................................... 60

Chapter 3  Electron-based techniques for examining surface and
thin film processes ............................................ 63
3.1  Classification of surface and microscopy techniques ....... 63
     3.1.1  Surface techniques as scattering experiments ....... 63
     3.1.2  Reasons for surface sensitivity .................... 64
     3.1.3  Microscopic examination of surfaces ................ 65
     3.1.4  Acronyms ........................................... 69
3.2  Diffraction and quasi-elastic scattering techniques ....... 70
     3.2.1  LEED ............................................... 70
     3.2.2  RHEED and THEED .................................... 72
     3.2.3  Elastic, quasi-elastic and inelastic scattering .... 14
3.3  Inelastic scattering techniques: chemical and electronic 
     state information ......................................... 76
     3.3.1  Electron spectroscopic techniques .................. 76
     3.3.2  Photoelectron spectroscopies: XPS and UPS .......... 79
     3.3.3  Auger electron spectroscopy: energies and atomic 
            physics ............................................ 81
     3.3.4  AES, XPS and UPS in solids and at surfaces ......... 84
3.4  Quantification of Auger spectra ........................... 88
     3.4.1  General equation describing quantification ......... 88
     3.4.2  Ratio techniques ................................... 92
3.5  Microscopy-spectroscopy: SEM, SAM, SPM, etc. .............. 95
     3.5.1 Scanning electron and Auger microscopy .............. 95
     3.5.2  Auger and image analysis of 'real world' samples ... 98
     3.5.3  Towards the highest spatial resolution: (a) SEM/ 
            STEM .............................................. 100
     3.5.4  Towards the highest spatial resolution: (b)
            scanned probe microscopy-spectroscopy ............. 104
     Further reading for chapter 3 ............................ 105
     Problems, talks and projects for chapter 3 ............... 105

Chapter 4  Surface processes in adsorption .................... 108
4.1  Chemi-and physisorption .................................. 108
4.2  Statistical physics of adsorption at low coverage ........ 109
     4.2.1  General points .................................... 109
     4.2.2  Localized adsorption: the Langmuir adsorption 
            isotherm .......................................... 109
     4.2.3  The two-dimensional adsorbed gas: Henry law 
            adsorption ........................................ 110
     4.2.4  Interactions and vibrations in higher density 
            adsorbates ........................................ 113
4.3  Phase diagrams and phase transitions ..................... 114
     4.3.1  Adsorption in equilibrium with the gas phase ...... 115
     4.3.2  Adsorption out of equilibrium with the gas phase .. 118
4.4  Physisorption: interatomic forces and lattice dynamical
     models ................................................... 119
     4.4.1  Thermodynamic information from single surface
            techniques ........................................ 119
     4.4.2  The crystallography of monolayer solids ........... 120
     4.4.3  Melting in two dimensions ......................... 124
     4.4.4  Construction and understanding of phase diagrams .. 125
4.5  Chemisorption: quantum mechanical models and chemical 
     practice ................................................. 128
     4.5.1  Phases and phase transitions of the lattice gas ... 128
     4.5.2  The Newns- Anderson model and beyond .............. 130
     4.5.3  Chemisorption: the first stages of oxidation ...... 133
     4.5.4  Chemisorption and catalysis: macroeconomics, 
            macromolecules and microscopy ..................... 135
     Further reading for chapter 4 ............................ 141
     Problems and projects for chapter 4 ...................... 141

Chapter 5  Surface processes in epitaxial growth .............. 144
5.1  Introduction: growth modes and nucleation barriers ....... 144
     5.1.1  Why are we studying epitaxial growth? ............. 144
     5.1.2  Simple models - how far can we go? ................ 145
     5.1.3  Growth modes and adsorption isotherms ............. 145
     5.1.4  Nucleation barriers in classical and atomistic
            models ............................................ 145
5.2  Atomistic models and rate equations ...................... 149
     5.2.1  Rate equations, controlling energies, and
            simulations ....................................... 149
     5.2.2  Elements of rate equation models .................. 150
     5.2.3  Regimes of condensation ........................... 152
     5.2.4  General equations for the maximum cluster 
            density ........................................... 154
     5.2.5  Comments on individual treatments ................. 155
5.3  Metal nucleation and growth on insulating substrates ..... 157
     5.3.1  Microscopy of island growth: metals on alkali 
            halides ........................................... 157
     5.3.2  Metals on insulators: checks and complications .... 159
     5.3.3  Defect-induced nucleation on oxides and 
            fluorides ......................................... 161
5.4  Metal deposition studied by UHV microscopies ............. 651
     5.4.1  In situ UHV SEM and LEEM of metals on metals ...... 
     5.4.2  FIM studies of surface diffusion on metals ........ 167
     5.4.3  Energies from STM and other techniques ............ 169
5.5  Steps, ripening and interdiffusion ....................... 174
     5.5.1  Steps as one-dimensional sinks .................... 174
     5.5.2  Steps as sources: diffusion and Ostwald ripening .. 176
     5.5.3  Interdiffusion in magnetic multilayers ............ 179
     Further reading for chapter 5 ............................ 181
     Problems and projects for chapter 5 ...................... 181

Chapter 6  Electronic structure and emission processes at
metallic surfaces ............................................. 184
6.1  The electron gas: work function, surface structure and 
     energy ................................................... 184
     6.1.1  Free electron models and density functionals ...... 184
     6.1.2  Beyond free electrons: work function, surface 
            structure and energy .............................. 190
     6.1.3  Values of the work function ....................... 193
     6.1.4  Values of the surface energy ...................... 196
6.2  Electron emission processes .............................. 200
     6.2.1  Thermionic emission ............................... 201
     6.2.2  Cold field emission ............................... 202
     6.2.3  Adsorption and diffusion: FES, FEM and thermal 
            field emitters .................................... 206
     6.2.4  Secondary electron emission ....................... 207
6.3  Magnetism at surfaces and in thin films .................. 210
     6.3.1 Symmetry, symmetry breaking and phase transitions .. 210
     6.3.2  Anisotropic interactions in 3D and '2D' magnets ... 211
     6.3.3  Magnetic surface techniques ....................... 213
     6.3.4  Theories and applications of surface magnetism .... 218
     Further reading for chapter 6 ............................ 224
     Problems and projects for chapter 6 ...................... 224

Chapter 7 Semiconductor surfaces and interfaces ............... 227
7.1  Structural and electronic effects at semiconductor 
     surfaces ................................................. 227
     7.1.1  Bonding in diamond, graphite, Si, Ge, GaAs, etc. .. 227
     7.1.2  Simple concepts versus detailed computations ...... 229
     7.1.3  Tight-bindingpseudopotential and ab initio 
            models ............................................ 230
7.2  Case studies of reconstructed semiconductor surfaces ..... 232
     7.2.1  GaAs(110), a charge-neutral surface ............... 232
     7.2.2  GaAs(111), a polar surface ........................ 234
     7.2.3  Si and Ge(111): why are they so different? ........ 235
     7.2.4  Si, Ge and GaAs(001), steps and growth ............ 239
7.3  Stresses and strains in semiconductor film growth ........ 242
     7.3.1  Thermodynamic and elasticity studies of surfaces .. 242
     7.3.2  Growth on Si(001) ................................. 245
     7.3.3  Strained layer epitaxy: Ge/Si(001) and 
            Si/Ge(001) ........................................ 249
     7.3.4  Growth of compound semiconductors ................. 252
     Further reading for chapter 7 ............................ 256
     Problems and projects for chapter 7 ...................... 257

Chapter 8  Surface processes in thin film devices ............. 260
8.1  Metals and oxides in contact with semiconductors ......... 260
     8.1.1  Band bending and rectifying contacts at 
            semiconductor surfaces ............................ 260
     8.1.2  Simple models of the depletion region ............. 263
     8.1.3  Techniques for analyzing semiconductor 
            interfaces ........................................ 265
8.2  Semiconductor heterojunctions and devices ................ 270
     8.2.1  Origins of Schottky barrier heights ............... 270
     8.2.2  Semiconductor heterostructures and band offsets ... 272
     8.2.3  Opto-electronic devices and 'band-gap
            engineering' ...................................... 274
     8.2.4  Modulation and δ-doping, strained layers, 
            quantum wires and dots ............................ 279
8.3  Conduction processes in thin film devices ................ 280
     8.3.1  Conductivity, resistivity and the relaxation
            time .............................................. 281
     8.3.2  Scattering at surfaces and interfaces in
            nanostructures .................................... 282
     8.3.3  Spin dependent scattering and magnetic 
            multilayer devices ................................ 284
8.4  Chemical routes to manufacturing ......................... 289
     8.4.1  Synthetic chemistry and manufacturing: the case
            of Si-Ge-C ........................................ 289
     8.4.2  Chemical routes to opto-electronics and!or 
            nano-magnetics .................................... 291
     8.4.3  Nanotubes and the future offlat panel TV .......... 293
     8.4.4  Combinatorial materials development and analysis .. 294
     Further reading for chapter 8 ............................ 295

Chapter 9  Postscript - where do we go from here? ............. 297
9.1  Electromigration and other degradation effects in 
     nanostructures ........................................... 297
9.2  What do the various disciplines bring to the table? ...... 299
9.3  What has been left out: future sources of information .... 301

Appendix A  Bibliography ...................................... 303
Appendix В  List of acronyms .................................. 306
Appendix С  Units and conversion factors ...................... 309
Appendix D  Resources on the web or CD-ROM .................... 312
Appendix E  Useful thermodynamic relationships ................ 314
Appendix F  Conductances and pumping speeds, С and 5 .......... 318
Appendix G  Materials for use in ultra-high vacuum ............ 320
Appendix H  UHV component cleaning procedures ................. 323
Appendix J  An outline of local density methods ............... 326
Appendix К  An outline of tight binding models ................ 328
References .................................................... 331
Index ......................................................... 363



Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:28:28 2019. Размер: 20,432 bytes.
Посещение N 1440 c 29.03.2016