Навигация
Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAlgebraic and discrete mathematical methods for modern biology / ed. by R.S.Robeva. - London: Elsevier, 2015. - xii, 368 p.: Ill. - Bibliogr. at the end of the chapters. - Ind.: p.363-368. - ISBN 978-0-12-801213-0
Шифр: (И/Е-A35) 02
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Contributors ................................................... ix
Preface ........................................................ xi

1    Graph Theory for Systems Biology: Interval Graphs,
     Motifs, and Pattern Recognition
     John R. Jungck and Rama Viswanathan
1.1  Introduction ............................................... 1
1.2  Revisualizing, Recognizing, and Reasoning About
     Relationships .............................................. 3
     1.2.1  Basic Concepts from Graph Theory .................... 3
     1.2.2  Interval Graphs in Biology .......................... 6
1.3  Example I—Differentiation: Gene Expression ................ 15
1.4  Example II—Disease Etiology ............................... 20
1.5  Conclusion ................................................ 25
Acknowledgments ................................................ 26
References ..................................................... 26

2    Food Webs and Graphs
     Margaret (Midge) Cozzens
2.1  Introduction .............................................. 29
2.2  Modeling Predator-Prey Relationships with Food Webs ....... 29
2.3  Trophic Levels and Trophic Status ......................... 30
     2.3.1  Background and Definitions ......................... 31
     2.3.2  Adding Complexity: Weighted Food Webs and Flow-
            Based Trophic Levels ............................... 35
     2.3.3  Flow-Based Trophic Level ........................... 36
2.4  Competition Graphs and Habitat Dimension .................. 37
     2.4.1  Competition Graphs (also Called Niche Overlap
            Graphs and Predator Graphs) ........................ 37
     2.4.2  Interval Graphs and Bцxicity ....................... 37
     2.4.3  Habitat Dimension .................................. 40
2.5  Connectance, Competition Number, and Projection Graphs .... 41
     2.5.1  Connectance ........................................ 42
     2.5.2  Competition Number ................................. 43
     2.5.3  Projection Graphs .................................. 44
2.6  Conclusions ............................................... 48
     References ................................................ 49

3    Adaptation and Fitness Graphs
     Kristina Crona and Emilie Wiesner
3.1  Introduction .............................................. 51
3.2  Fitness Landscapes and Fitness Graphs ..................... 52
     3.2.1  Basic Terminology and Notation ..................... 52
     3.2.2  Fitness, Fitness Landscapes, and Fitness Graphs .... 53
     3.2.3  Epistasis .......................................... 55
3.3  Fitness Graphs and Recombination .......................... 58
3.4  Fitness Graphs and Drug Cycling ........................... 60
     References ................................................ 63

4    Signaling Networks: Asynchronous Boolean Models
     Réka Albert and Raina Robeva
4.1  Introduction to Signaling Networks ........................ 65
4.2  A Brief Summary of Graph-Theoretic Analysis of Signaling
     Networks .................................................. 66
4.3  Dynamic Modeling of Signaling Networks .................... 69
4.4  The Representation of Node Regulation in Boolean Models ... 70
4.5  The Dynamics of Boolean Models ............................ 72
4.6  Aftractor Analysis for Stochastic Asynchronous Update ..... 75
4.7  Boolean Models Capture Characteristic Dynamic Behavior .... 77
4.8  How to Deal with Incomplete Information when
     Constructing the Model .................................... 80
     4.8.1  Dealing with Gaps in Network Construction .......... 81
     4.8.2  Dealing with Gaps in Transition Functions .......... 82
     4.8.3  Dealing with Gaps in Initial Condition ............. 84
     4.8.4  Dealing with Gaps in Timing Information ............ 85
4.9  Generate Novel Predictions with the Model ................. 85
4.10 Boolean Rule-Based Structural Analysis of Cellular
     Networks .................................................. 86
4.11 Conclusions ............................................... 90
     References ................................................ 90

5    Dynamics of Complex Boolean Networks: Canalization,
     Stability, and Criticality
     Qijun He, Matthew Macauley and Robin Davies
5.1  Introduction .............................................. 93
5.2  Boolean Network Models .................................... 95
     5.2.1  Gene Regulatory Networks ........................... 95
     5.2.2  Network Topology ................................... 96
     5.2.3  Network Topology and Random Networks ............... 99
     5.2.4  Boolean Functions ................................. 100
     5.2.5  Boolean Networks .................................. 102
5.3  Canalization ............................................. 104
     5.3.1  Canalizing Boolean Functions ...................... 104
     5.3.2  Nested Canalizing Functions ....................... 105
     5.3.3  Canalizing Depth .................................. 109
     5.3.4  Dominant Variables of NCFs ........................ 110
5.4  Dynamics Over Complex Networks ........................... 112
     5.4.1  Boolean Calculus .................................. 113
     5.4.2  Derrida Plots and the Three Dynamical Regimes ..... 115
     5.4.3  Ensembles of RBNs ................................. 116
     Acknowledgments .......................................... 118
     References ............................................... 118

6    Steady State Analysis of Boolean Models: A Dimension
     Reduction Approach
     Alan Veliz-Cuba and David Murrugarra
6.1  Introduction ............................................. 121
6.2  An Example: Toy Model of the lac Operon .................. 122
6.3  General Reduction ........................................ 125
     6.3.1  Definition ........................................ 125
     6.3.2  Examples .......................................... 125
6.4  Implementing the Reduction Algorithm Using Boolean
     Algebra .................................................. 128
6.5  Implementing the Reduction Algorithm Using Polynomial
     Algebra .................................................. 129
     6.5.1  Background ........................................ 129
     6.5.2  Using Polynomial Algebra Software to Reduce
            Boolean Networks .................................. 130
6.6  Applications ............................................. 131
     6.6.1  The lac Operon .................................... 131
     6.6.2  Th-Cell Differentiation ........................... 133
6.7  AND Boolean Models ....................................... 134
     6.7.1  Background ........................................ 135
6.8  Conclusion ............................................... 137
     References ............................................... 138

7    BioModel Engineering with Petri Nets
     Mary Ann Blätke, Monika Heinerand Wolfgang Marwan
7.1  Introduction ............................................. 141
7.2  Running Case Study ....................................... 144
7.3  Petri Nets (fig.1fig.2) .......................................... 146
     7.3.1  Modeling .......................................... 146
     7.3.2  Analysis .......................................... 153
     7.3.3  Further Reading ................................... 159
     7.3.4  Exercises ......................................... 160
7.4  Stochastic Petri Nets (fig.3fig.1fig.2) .............................. 162
     7.4.1  Modeling .......................................... 162
     7.4.2  Analysis .......................................... 165
     7.4.3  Further Reading ................................... 169
     7.4.4  Exercises ......................................... 170
7.5  Continuous Petri Nets (Cfig.1fig.2) .............................. 172
     7.5.1  Modeling .......................................... 172
     7.5.2  Analysis .......................................... 173
     7.5.3  Further Reading ................................... 175
     7.5.4  Exercises ......................................... 176
7.6  Hybrid Petri Nets (fig.4fig.1fig.2) .................................. 177
     7.6.1  Modeling .......................................... 178
     7.6.2  Analysis .......................................... 180
     7.6.3  Further Reading ................................... 181
     7.6.4  Exercises ......................................... 182
7.7  Colored Petri Nets ....................................... 183
     7.7.1  Further Reading ................................... 186
     7.7.2  Exercises ......................................... 186
7.8  Conclusions .............................................. 187
     Acknowledgments .......................................... 189
7.9  Supplementary Materials .................................. 189
     References ............................................... 189

8    Transmission of Infectious Diseases: Data, Models, and
     Simulations
     Winfried Just, Hannah Callender, M. Drew LaMar and
     Natalia Toporikova
8.1  Introduction: Why Do We Want to Model Infectious
     Diseases? ................................................ 193
8.2  Mathematical Models of Disease Transmission .............. 198
     8.2.1  Transmission Probabilities ........................ 199
     8.2.2  The Time Line of Within-Host Dynamics ............. 201
     8.2.3  Movement Between Compartments ..................... 203
     8.2.4  Basic Model Types: SEIR, SIR, SI, and SIS ......... 206
     8.2.5  How to Model Time and Run Simulations ............. 208
8.3  How Does the Computer Run Simulations? ................... 210
     8.3.1  Meet the Simulator ................................ 210
     8.3.2  How to Load the Die ............................... 212
     References ............................................... 214

9    Disease Transmission Dynamics on Networks: Network
     Structure Versus Disease Dynamics
     Winfried Just, Hannah Callender and M. Drew LaMar
9.1  Introduction ............................................. 217
9.2  Models Based on the Uniform Mixing Assumption ............ 218
     9.2.1  Compartment-Based Models .......................... 218
     9.2.2  The Basic Reproductive Ratio R0 ................... 220
9.3  Network-Based Models ..................................... 224
     9.3.1  Networks and Graphs ............................... 225
     9.3.2  Disease Transmission on Networks .................. 229
     9.3.3  Examples of Contact Networks ...................... 230
     9.3.4  Additional Graph-Theoretic Notions ................ 231
     9.3.5  Erdős-Rényi Random Graphs ......................... 233
9.4  Suggestions for Further Study ............................ 234
     Acknowledgments .......................................... 235
     References ............................................... 235

10   Predicting Correlated Responses in Quantitative Traits
     Under Selection: A Linear Algebra Approach
     Janet Steven and Bessie Kirkwood
10.1 Introduction ............................................. 237
10.2 Quantifying Selection on Quantitative Traits ............. 238
     10.2.1 Describing Traits Mathematically .................. 238
     10.2.2 Quantifying Reproduction and Survival ............. 241
     10.2.3 Describing the Relationship Between Fitness and
            a Trait ........................................... 242
     10.2.4 Determining the Genetic Component of Quantitative
            Traits ............................................ 245
     10.2.5 Estimating Heritability in a Trait ................ 246
     10.2.6 The Breeder's Equation ............................ 247
     10.2.7 The Price Equation ................................ 249
10.3 Covariance Among Traits Under Selection .................. 249
     10.3.1 Nonindependence of Multiple Traits ................ 250
     10.3.2 The Genetic Variance-Covariance Matrix ............ 252
     10.3.3 Simultaneous Selection on Multiple Traits ......... 253
     10.3.4 Predicting the Outcome of Selection on Covarying
            Traits ............................................ 255
     10.3.5 Evolution of the G Matrix Itself .................. 257
     References ............................................... 258

11   Metabolic Analysis: Algebraic and Geometric Methods
     Terrell L. Hodge, Blair R. Szymczyna and Todd J. Barkman
11.1 Introduction ............................................. 261
11.2 Encoding the Reactions: Linear Algebraic Modeling ........ 262
11.3 Adding Reaction Kinetics: Algebraic Formulation of
     Mass-Action Kinetics ..................................... 271
11.4 Directions for Further Reading and Research: Metabolic
     Pathways ................................................. 273
11.5 NMR and Linear Algebraic Methods ......................... 274
11.6 NMR Spectroscopy and Applications to the Study of
     Metabolism ............................................... 274
     11.6.1 Principles of NMR Spectroscopy .................... 275
     11.6.2 The NMR Spectrum .................................. 277
     11.6.3 NMR Investigations of Metabolism .................. 281
11.7 NMR for Metabolic Analysis and Mathematical Methods:
     Directions of Further Research ........................... 289
11.8 Supplementary Materials .................................. 290
     References ............................................... 290

12   Reconstructing the Phylogeny: Computational Methods
     Grady Weyenberg and Ruriko Yoshida
12.1 Introduction ............................................. 293
     12.1.1 Sequences and Alignments .......................... 297
12.2 Quantifying Evolutionary Change .......................... 299
     12.2.1 Probabilistic Models of Molecular Evolution ....... 299
     12.2.2 Common Model Extensions ........................... 306
12.3 Reconstructing the Tree .................................. 306
     12.3.1 Distance-Based Methods ............................ 306
     12.3.2 Maximum Parsimony ................................. 309
     12.3.3 Methods Based on Probability Models ............... 310
12.4 Model Selection .......................................... 312
12.5 Statistical Methods to Test Congruency Between Trees ..... 313
References .................................................... 316

13   RNA Secondary Structures: Combinatorial Models and
     Folding Algorithms
     Qijun He, Matthew Macauley and Robin Davies
13.1 Introduction ............................................. 321
13.2 Combinatorial Models of Noncrossing RNA Structures ....... 324
     13.2.1 Partial Matchings and Physical Constraints ........ 324
     13.2.2 Loop Decomposition ................................ 327
13.3 Energy-Based Folding Algorithms for Secondary Structure
     Prediction ............................................... 329
     13.3.1 Maximizing Bond Strengths via Dynamic
            Programming ....................................... 329
     13.3.2 Minimum Free Energy Folding ....................... 333
13.4 Stochastic Folding Algorithms via Language Theory ........ 335
     13.4.1 Languages and Grammars ............................ 335
     13.4.2 RNA Secondary Structures .......................... 337
     13.4.3 Secondary Structure Prediction Using SCFGs ........ 340
     13.4.4 Summary ........................................... 341
13.5 Pseudoknots .............................................. 341
     Acknowledgments .......................................... 344
     References ............................................... 344

14   RNA Secondary Structures: An Approach Through
     Pseudoknots and Fatgraphs
     Christian M. Reidys
14.1 Introduction ............................................. 347
14.2 Fatgraphs and Shapes ..................................... 349
14.3 Genus Recursion .......................................... 354
14.4 Shapes of Fixed Topological Genus ........................ 357

Acknowledgments ............................................... 361
References .................................................... 361
Index ......................................................... 363

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2017 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Fri Jan 20 13:57:19 2017. Размер: 19,362 bytes.
Посещение N 289 c 10.05.2016