Pumps, channels, and transporters: methods of functional analysis (Hoboken, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPumps, channels, and transporters: methods of functional analysis / ed. by R.J.Clarke, M.A.A.Khalid. - Hoboken: Wiley, 2015. - xx, 468 p.: ill. - (Chemical analysis; vol.183). - Bibliogr. at the end of the chapters. - Ind.: p.443-460. - ISBN 978-1-118-85880-6
Шифр: (Pr 590/183) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xv
List of Contributors .......................................... xix

1    Introduction ............................................... 1
     Mohammed A.A. Khalid and Ronald J. Clarke
1.1  History .................................................... 1
1.2  Energetics of Transport .................................... 6
1.3  Mechanistic Considerations ................................. 7
1.4  Ion Channels ............................................... 8
     1.4.1  Voltage-Gated ....................................... 8
     1.4.2  Ligand-Gated ........................................ 9
     1.4.3  Mechanosensitive .................................... 9
     1.4.4  Light-Gated ......................................... 9
1.5  Ion Pumps ................................................. 10
     1.5.1  ATP-Activated ...................................... 10
     1.5.2  Light-Activated .................................... 11
     1.5.3  Redox-Linked ....................................... 12
1.6  Transporters .............................................. 13
     1.6.1  Symporters and Antiporters ......................... 13
     1.6.2  Na+-Linked and H+-Linked ........................... 14
1.7  Diseases of Ion Channels, Pumps, and Transporters ......... 15
     1.7.1  Channelopathies .................................... 15
     1.7.2  Pump Dysfunction ................................... 17
     1.7.3  Transporter Dysfunction ............................ 18
1.8  Conclusion ................................................ 18
     References ................................................ 19

2    Study of Ion Pump Activity Using Black Lipid Membranes .... 23
     Hans-Jurgen Apell and Valerij S. Sokolov
2.1  Introduction .............................................. 23
2.2  Formation of Black Lipid Membranes ........................ 24
2.3  Reconstitution in Black Lipid Membranes ................... 25
     2.3.1  Reconstitution of Na+, K+-ATPase in Black Lipid
            Membranes .......................................... 25
     2.3.2  Recording Transient Currents with Membrane
            Fragments Adsorbed to a Black Lipid Membrane ....... 26
2.4  The Principles of Capacitive Coupling ..................... 28
     2.4.1   Dielectric Coefficients ........................... 29
2.5  The Gated-Channel Concept ................................. 31
2.6  Relaxation Techniques ..................................... 34
     2.6.1  Concentration-Jump Methods ......................... 34
     2.6.2  Charge-Pulse Method ................................ 39
2.7  Admittance Measurements ................................... 39
2.8  The Investigation of Cytoplasmic and Extracellular
     Ion Access Channels in the Na+, K+-ATPase ................. 42
2.9  Conclusions ............................................... 43
     References ................................................ 45

3    Analyzing Ion Permeation in Channels and Pumps
     Using Patch-Clamp Recording ............................... 51
     Andrew J. Moorhouse, Trevor M. Lewis, and Peter H. Barry
3.1  Introduction .............................................. 51
3.2  Description of the Patch-Clamp Technique .................. 52
     3.2.1  Development of Whole-Cell Dialysis with Voltage-
            Clamp .............................................. 52
3.3  Patch-Clamp Measurement and Analysis of Single Channel
     Conductance ............................................... 54
     3.3.1  Conductance and Ohm's Law .......................... 54
     3.3.2  Conductance of Channels versus Pumps ............... 56
     3.3.3  Fluctuation Analysis ............................... 57
     3.3.4  Single Channel Recordings .......................... 61
3.4  Determining Ion Selectivity and Relative Permeation in
     Whole-Cell Recordings ..................................... 67
     3.4.1  Dilution Potential Measurements .................... 67
     3.4.2  Bi-Ionic Potential Measurements .................... 69
     3.4.3  Voltage and Solution Control in Whole-Cell
            Patch-Clamp Recordings ............................. 70
     3.4.4  Ion Shift Effects During Whole-Cell Patch-Clamp
            Experiments ........................................ 71
     3.4.5  Liquid Junction Potential Corrections .............. 72
3.5  Influence of Voltage Corrections in Quantifying Ion
     Selectivity in Channels ................................... 74
     3.5.1  Analysis of Counterion Permeation in Glycine
            Receptor Channels .................................. 74
     3.5.2  Analysis of Anion-Cation Permeability in
            Cation-Selective Mutant Glycine Receptor Channels .. 75
3.6  Ion Permeation Pathways through Channels and Pumps ........ 76
     3.6.1  The Ion Permeation Pathway in Pentameric
            Ligand-Gated Ion Channels .......................... 76
       3.6.1.1  Extracellular and Intracellular Components of
                the Permeation Pathway ......................... 78
       3.6.1.2  The TM2 Pore is the Primary Ion Selectivity
                Filter ......................................... 79
     3.6.2  Ion Permeation Pathways in Pumps Identified Using
            Patch-Clamp ........................................ 80
       3.6.2.1  Palytoxin Uncouples the Occluded Gates of
                the Na+, K+-ATPase ............................. 81
3.7  Conclusions ............................................... 82
     References ................................................ 83

4    Probing Conformational Transitions of Membrane Proteins
     with Voltage Clamp Fluorometry (VCF) ...................... 89
     Thomas Friedrich
4.1  Introduction .............................................. 89
4.2  Description of The VCF Technique .......................... 90
     4.2.1  Generation of Single-Cysteine Reporter
            Constructs, Expression in Xenopus laevis Oocytes,
            Site-Directed Fluorescence Labeling ................ 90
     4.2.2  VCF Instrumentation ................................ 91
     4.2.3  Technical Precautions and Controls ................. 93
4.3  Perspectives from Early Measurements on Voltage-Gated K+
     Channels .................................................. 95
     4.3.1  Early Results Obtained with VCF on Voltage-Gated
            K+ Channels ........................................ 95
     4.3.2  Probing the Environmental Changes: Fluorescence
            Spectra, Anisotropy, and the Effects of Quenchers .. 98
4.4  VCF Applied to P-Type ATPases ............................ 100
     4.4.1  Structural and Functional Aspects of Na+, K+-
            and H+, K+-ATPase ................................. 100
     4.4.2  The N790C Sensor Construct of Sheep Na+,K+-ATPase
            ocl-Subunit ....................................... 102
       4.4.2.1  Probing Voltage-Dependent Conformational
                Changes of Na+, K+-ATPase ...................... 103
       4.4.2.2  The Influence of Intracellular Na+
                Concentrations ................................ 107
     4.4.3  The Rat Gastric H+, K+-ATPase S806C Sensor
            Construct ......................................... 108
       4.4.3.1  Voltage-Dependent Conformational Shifts of
                the H+, K+-ATPase Sensor Construct S806C
                During the H+Transport Branch ................. 109
       4.4.3.2  An Intra- or Extracellular Access Channel of
                the Proton Pump? .............................. 110
       4.4.3.3  Effects of Extracellular Ligands: K+ and Na+ .. 111
     4.4.4  Probing Intramolecular Distances by Double
            Labeling and FRET ................................. 113
4.5  Conclusions and Perspectives ............................. 116
     References ............................................... 117

5    Patch Clamp Analysis of Transporters via Pre-Steady-
     State Kinetic Methods .................................... 121
     Christof Grewer
5.1  Introduction ............................................. 121
5.2  Patch Clamp Analysis of Secondary-Active Transporter
     Function ................................................. 122
     5.2.1  Patch Clamp Methods ............................... 122
     5.2.2  Whole-Cell Recording .............................. 124
     5.2.3  Recording from Excised Patches .................... 124
5.3  Perturbation Methods ..................................... 125
     5.3.1  Concentration Jumps ............................... 126
     5.3.2  Voltage Jumps ..................................... 129
5.4  Evaluation and Interpretation of Pre-Steady-State
     Kinetic Data ............................................. 130
     5.4.1  Integrating Rate Equations that Describe
            Mechanistic Transport Models ...................... 131
     5.4.2  Assigning Kinetic Components to Elementary
            processes in the Transport Cycle .................. 131
5.5  Mechanistic Insight into Transporter Function ............ 133
     5.5.1  Sequential Binding Mechanism ...................... 133
     5.5.2  Electrostatics .................................... 134
     5.5.3  Structure-Function Analysis ....................... 134
5.6  Case Studies ............................................. 136
     5.6.1  Glutamate Transporter Mechanism ................... 136
     5.6.2  Electrogenic Charge Movements Associated with
            the Electroneutral Amino Acid Exchanger ASCT2 ..... 137
5.7  Conclusions .............................................. 139
     References ............................................... 139

6    Recording of Pump and Transporter Activity Using
     Solid-Supported Membranes (SSM-Based Electrophysiology) .. 147
     Francesco Tadini-Buoninsegni and Klaus Fendler
6.1  Introduction ............................................. 147
6.2  The Instrument ........................................... 148
     6.2.1  Rapid Solution Exchange Cuvette ................... 149
     6.2.2  Setup and Flow Protocols .......................... 150
     6.2.3  Protein Preparations .............................. 151
     6.2.4  Commercial Instruments ............................ 152
6.3  Measurement Procedures, Data Analysis, and
     Interpretation ........................................... 152
     6.3.1  Current Measurement, Signal Analysis, and
            Reconstruction of Pump Currents ................... 152
     6.3.2  Voltage Measurement ............................... 156
     6.3.3  Solution Exchange Artifacts ....................... 157
6.4  P-Type ATPases Investigated by SSM-Based
     Electrophysiology ........................................ 159
     6.4.1  Sarcoplasmic Reticulum Ca2+-ATPase ................ 159
     6.4.2  Human Cu+-ATPases ATP7A and ATP7B ................. 163
6.5  Secondary Active Transporters ............................ 165
     6.5.1  Antiport: Assessing the Forward and Reverse
            Modes of the NhaA Na+/H+ Exchanger of E. coli ..... 166
     6.5.2  Cotransport: A Sugar-Induced Electrogenic
            Partial Reaction in the Lactose Permease Lac Y of
            E. coli ........................................... 168
     6.5.3  The Glutamate Transporter EAAC1: A Robust
            Electrophysiological Assay with High Information
            Content ........................................... 170
6.6  Conclusions .............................................. 172
     References ............................................... 173

7    Stopped-FIow Fluorimetry Using Voltage-Sensitive
     Fluorescent Membrane Probes .............................. 179
     Ronald J. Clarke and Mohammed A.A. Khalid
7.1  Introduction ............................................. 179
7.2  Basics of the Stopped-FIow Technique ..................... 181
     7.2.1  Flow Cell Design .................................. 181
     7.2.2  Rapid Data Acquisition ............................ 181
     7.2.3  Dead Time ......................................... 183
7.3  Covalent Versus Noncovalent Fluorescence Labeling ........ 184
     7.3.1  Intrinsic Fluorescence ............................ 185
     7.3.2  Covalently Bound Extrinsic Fluorescent Probes ..... 186
     7.3.3  Noncovalently Bound Extrinsic Fluorescent Probes .. 187
7.4  Classes of Voltage-Sensitive Dyes ........................ 188
     7.4.1  Slow Dyes ......................................... 188
     7.4.2  Fast Dyes ......................................... 190
7.5  Measurement of the Kinetics of the Na+, K+-ATPase ........ 193
     7.5.1  Dye Concentration ................................. 194
     7.5.2  Excitation Wavelength and Light Source ............ 197
     7.5.3  Monochromators and Filters ........................ 198
     7.5.4  Photomultiplier and Voltage Supply ................ 199
     7.5.5  Reactions Detected by RH421 ....................... 200
     7.5.6  Origin of the RH421 Response ...................... 202
7.6  Conclusions .............................................. 204
     References ............................................... 204

8    Nuclear Magnetic Resonance Spectroscopy .................. 211
     Philip W. Kuchel
8.1  Introduction ............................................. 211
     8.1.1  Definition of NMR ................................. 212
     8.1.2  Why So Useful? .................................... 212
     8.1.3  Magnetic Polarization ............................. 212
     8.1.4  Larmor Equation ................................... 213
     8.1.5  Chemical Shift .................................... 213
     8.1.6  Free Induction Decay .............................. 214
     8.1.7  Pulse Excitation .................................. 215
     8.1.8  Relaxation Times .................................. 217
     8.1.9  Splitting of Resonance Lines ...................... 217
     8.1.10 Measuring Membrane Transport ...................... 217
8.2  Covalently-Induced Chemical Shift Differences ............ 218
     8.2.1  Arginine Transport ................................ 218
     8.2.2  Other Examples .................................... 220
8.3  Shift-Reagent-Induced Chemical Shift Differences ......... 220
     8.3.1  DyPPP ............................................. 220
     8.3.2  TmDTPA and TmDOTP ................................. 220
     8.3.3  Fast Cation Exchange .............................. 220
8.4  pH-Induced Chemical Shift Differences .................... 223
     8.4.1  Orthophosphate .................................... 223
     8.4.2  Methylphosphonate ................................. 224
     8.4.3  Triethylphosphate: 31P Shift Reference ............ 224
8.5  Hydrogen-Bond-Induced Chemical Shift Differences ......... 225
     8.5.1  Phosphonates: DMMP ................................ 225
     8.5.2  HPA ............................................... 225
     8.5.3  Fluorides ......................................... 227
8.6  Ionic-Environment-Induced Chemical Shift Differences ..... 229
     8.6.1  Cs+ Transport ..................................... 229
8.7  Relaxation Time Differences .............................. 229
     8.7.1  Mn2+ Doping ....................................... 229
8.8  Diffusion Coefficient Differences ........................ 231
     8.8.1  Stejskal-Tanner Plot .............................. 231
     8.8.2  Andrasko's Method ................................. 231
8.9  Some Subtle Spectral Effects ............................. 233
     8.9.1  Scalar (J) Coupling Differences ................... 233
     8.9.2  Endogenous Magnetic Field Gradients ............... 233
       8.9.2.1  Magnetic Induction and Magnetic Field
                Strength ...................................... 234
       8.9.2.2  Magnetic Field Gradients Across Cell
                Membranes and CO Treatment of RBCs ............ 234
       8.9.2.3  Exploiting Magnetic Field Gradients in
                Membrane Transport Studies .................... 235
     8.9.3  Residual Quadrupolar (νQ) Coupling ................ 235
8.10 A Case Study: The Stoichiometric Relationship Between
     the Number of Na+ Ions Transported per Molecule of
     Glucose Consumed in Human RBCs ........................... 236
8.11 Conclusions .............................................. 239
     References ............................................... 239

9    Time-Resolved and Surface-Enhanced Infrared
     Spectroscopy ............................................. 245
     Joachim Heberle
9.1  Introduction ............................................. 245
9.2  Basics of IR Spectroscopy ................................ 246
     9.2.1  Vibrational Spectroscopy .......................... 246
     9.2.2  FTIR Spectroscopy ................................. 247
     9.2.3  IR Spectra of Biological Compounds ................ 248
     9.2.4  Difference Spectroscopy ........................... 250
9.3  Reflection Techniques .................................... 250
     9.3.1  Attenuated Total Reflection ....................... 250
     9.3.2  Surface-Enhanced IR Absorption .................... 251
9.4  Application to Electron-Transferring Proteins ............ 252
     9.4.1  Cytochrome с ...................................... 252
     9.4.2  Cytochrome с Oxidase .............................. 253
9.5  Time-Resolved IR Spectroscopy ............................ 254
     9.5.1  The Rapid-Scan Technique .......................... 254
     9.5.2  The Step-Scan Technique ........................... 255
     9.5.3  Tunable QCLs ...................................... 255
9.6  Applications to Retinal Proteins ......................... 256
     9.6.1  Bacteriorhodopsin ................................. 256
     9.6.2  Channelrhodopsin .................................. 260
9.7  Conclusions .............................................. 263
     References ............................................... 264

10   Analysis of Membrane-Protein Complexes by Single-
     Molecule Methods ......................................... 269
     Katia Cosentino, Stephanie Bleicken, and Ana J.
     García-Sáez
10.1 Introduction ............................................. 269
10.2 Fluorophores for Single Particle Labeling ................ 270
10.3 Principles of Fluorescence Correlation Spectroscopy ...... 271
     10.3.1 Analysis of Molecular Complexes by Two-Color FCS .. 275
     10.3.2 FCS Variants to Study Lipid Membranes ............. 275
     10.3.3 FCS Applications to Membranes ..................... 278
10.4 Principle and Analysis of Single-Molecule Imaging ........ 279
     10.4.1 TIRF Microscopy ................................... 280
     10.4.2 Single-Molecule Detection ......................... 282
     10.4.3 Single Particle Tracking and Trajectory Analysis .. 284
10.5 Complex Dynamics and Stoichiometry by Single-Molecule
     Microscopy ............................................... 285
     10.5.1 Application to Single-Molecule Stoichiometry
            Analysis .......................................... 285
     10.5.2 Application to Kinetics Processes in Cell
            Membranes ......................................... 290
10.6 FCS Versus SPT ........................................... 291
     References ............................................... 291

11   Probing Channel, Pump, and Transporter Function Using
     Single-Molecule Fluorescence ............................. 299
     Eve E. Weatherill, John S.H. Danial, and Mark I. Wallace
11.1 Introduction ............................................. 299
     11.1.1 Basic Principles .................................. 300
11.2 Practical Considerations ................................. 300
     11.2.1 Observables ....................................... 301
     11.2.2 Apparatus ......................................... 301
     11.2.3 Labels ............................................ 302
     11.2.4 Bilayers .......................................... 303
11.3 SMF Imaging .............................................. 303
     11.3.1 Fluorescence Colocalization ....................... 304
     11.3.2 Conformational Changes ............................ 306
     11.3.3 Superresolution Microscopy ........................ 307
11.4 Single Molecule Forster Resonance Energy Transfer ........ 308
     11.4.1 Interactions/Stoichiometry ........................ 308
     11.4.2 Conformational Changes ............................ 309
11.5 Single-Molecule Counting by Photobleaching ............... 312
11.6 Optical Channel Recording ................................ 314
11.7 Simultaneous Techniques .................................. 315
11.8 Summary .................................................. 318
     References ............................................... 318

12   Electron Paramagnetic Resonance: Site-Directed Spin
     Labeling ................................................. 327
     Louise J. Brown and Joanna E. Hare
12.1 Introduction ............................................. 327
     12.1.1 Development of EPR as a Tool for Structural
            Biology ........................................... 329
     12.1.2 SDSL-EPR: A Complementary Approach to Determine
            Structure-Function Relationships .................. 330
12.2 Basics of the EPR Method ................................. 331
     12.2.1 Physical Basis of the EPR Signal .................. 331
     12.2.2 Spin Labeling ..................................... 333
     12.2.3 EPR Instrumentation ............................... 336
12.3 Structural and Dynamic Information from SDSL-EPR ......... 336
     12.3.1 Mobility Measurements ............................. 336
     12.3.2 Solvent Accessibility ............................. 341
12.4 Distance Measurements .................................... 345
     12.4.1 Interspin Distance Measurements ................... 345
     12.4.2 Continuous Wave ................................... 347
     12.4.3 Pulsed Methods: DEER .............................. 349
12.5 Challenges ............................................... 353
     12.5.1 New Labels ........................................ 353
     12.5.2 Spin-Label Flexibility ............................ 355
     12.5.3 Production and Reconstitution Challenges:
            Nanodiscs ......................................... 355
12.6 Conclusions .............................................. 356
     References ............................................... 357

13   Radioactivity-Based Analysis of Ion Transport ............ 367
     Ingolf Bernhardt and J. Clive Ellory
13.1 Introduction ............................................. 367
13.2 Membrane Permeability for Electroneutral Substances
     and Ions ................................................. 368
13.3 Kinetic Considerations ................................... 370
13.4 Techniques for Ion Flux Measurements ..................... 371
     13.4.1 Conventional Methods .............................. 371
     13.4.2 Alternative Method ................................ 373
13.5 Kinetic Analysis of Ion Transporter Properties ........... 375
13.6 Selected Cation Transporter Studies on Red Blood Cells ... 376
     13.6.1 K+,C1" Cotransport (KCC) .......................... 378
     13.6.2 Residual Transport ................................ 378
13.7 Combination of Radioactive Isotope Studies with Methods
     using Fluorescent Dyes ................................... 379
13.8 Conclusions .............................................. 382
     References ............................................... 383

14   Cation Uptake Studies with Atomic Absorption
     Spectrophotometry (AAS) .................................. 387
     Thomas Friedrich
14.1 Introduction ............................................. 387
14.2 Overview of the Technique of AAS ......................... 389
     14.2.1 Historical Account of AAS with Flame Atomization .. 390
     14.2.2 Element-Specific Radiation Sources ................ 391
     14.2.3 Electrothermal Atomization in Heated Graphite
            Tubes ............................................. 392
     14.2.4 Correction for Background Absorption .............. 394
14.3 The Expression System of Xenopus laevis Oocytes
     for Cation Flux Studies: Practical Considerations ........ 395
14.4 Experimental Outline of the AAS Flux Quantification
     Technique ................................................ 395
14.5 Representative Results Obtained with the AAS Flux
     Quantification Technique ................................. 397
     14.5.1 Reaction Cycle of P-Type ATPases .................. 398
     14.5.2 Rb+Uptake Kinetics: Inhibitor Sensitivity ......... 398
     14.5.3 Dependence of Rb+ Transport of Gastric
            H+, K+-ATPase on Extra- and Intracellular pH ...... 400
     14.5.4 Determination of Na+, K+-ATPase Transport
            Stoichiometry and Voltage Dependence of H+, K+-
            ATPase Rb+ Transport .............................. 403
     14.5.5 Effects of C-Terminal Deletions of the
            H+, K+-ATPase α-Subunit ........................... 404
     14.5.6 Li+ and Cs+ Uptake Studies ........................ 405
14.6 Concluding Remarks ....................................... 407
     References ............................................... 408

15   Long Timescale Molecular Simulations for Understanding
     Ion Channel Function ..................................... 411
     Ben Corry
15.1 Introduction ............................................. 411
15.2 Fundamentals of MD Simulation ............................ 412
     15.2.1 The Main Idea ..................................... 412
     15.2.2 Force Fields ...................................... 414
     15.2.3 Other Simulation Considerations ................... 416
     15.2.4 Why Do MD Simulations Take So Much Computational
            Power? ............................................ 416
       15.2.4.1 Force Calculations ............................ 417
       15.2.4.2 Time Step ..................................... 417
15.3 Simulation Duration and Simulation Size .................. 418
15.4 Historical Development of Long MD Simulations ............ 421
15.5 Limitations and Challenges Facing MD Simulations ......... 423
     15.5.1 Force Field and Algorithm Accuracy ................ 423
     15.5.2 Sampling Problems ................................. 424
15.6 Example Simulations of Ion Channels ...................... 425
     15.6.1 Simulations of Ion Permeation ..................... 425
     15.6.2 Simulations of Ion Selectivity .................... 428
     15.6.3 Simulations of Channel Gating ..................... 432
15.7 Conclusions .............................................. 433
     References ............................................... 436

Index ......................................................... 443
Chemical Analysis: A Series of Monographs on Analytical
Chemistry and its Applications ................................ 461


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:29:52 2019. Размер: 32,085 bytes.
Посещение N 703 c 07.11.2017