Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAdvanced surfaces for stem cell research / ed. by A.Tiwari et al. - Beverly: Scrivener Publishing; Hoboken: Wiley, 2017. - xvi, 459 p.: ill., tab. - (Advanced materials series). - Bibliogr. at the end of the chapters. - Ind.: p.453-459. - ISBN 978-1-119-24250-5
Шифр: (И/Е8-A22) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xv
1  Extracellular Matrix Proteins for Stem Cell Fate ............. 1
   Betül Çelebi-Saltik
   1.1  Human Stem Cells, Sources, and Niches ................... 2
   1.2  Role of Extrinsic and Intrinsic Factors ................. 5
        1.2.1  Shape ............................................ 5
        1.2.2  Topography Regulates Cell Fate ................... 6
        1.2.3  Stiffness and Stress ............................. 6
        1.2.4  Integrins ........................................ 7
        1.2.5  Signaling via Integrins .......................... 9
   1.3  Extracellular Matrix of the Mesenchyme: Human Bone
        Marrow ................................................. 11
   1.4  Biomimetic Peptides as Extracellular Matrix Proteins ... 13
   References .................................................. 15
2  The Superficial Mechanical and Physical Properties of
   Matrix Microenvironment as Stem Cell Fate Regulator ......... 23
   Mohsen Shahrousvand, Gity Mir Mohamad Sadeghi and Ali Salimi
   2.1  Introduction ........................................... 24
   2.2  Fabrication of the Microenvironments with Different
        Properties in Surfaces ................................. 25
   2.3  Effects of Surface Topography on Stem Cell Behaviors ... 28
   2.4  Role of Substrate Stiffness and Elasticity of
        Matrix on Cell Culture ................................. 31
   2.5  Stem Cell Fate Induced by Matrix Stiffness and
        Its Mechanism .......................................... 31
   2.6  Competition/Compliance between Matrix Stiffness and
        Other Signals and Their Effect on Stem Cells Fate ...... 33
   2.6  Effects of Matrix Stiffness on Stem Cells in
        Two Dimensions versus Three Dimensions ................. 33
   2.8  Effects of External Mechanical Cues on Stem Cell Fate
        from Surface Interactions Perspective .................. 35
   2.9  Conclusions ............................................ 36
   Acknowledgments ............................................. 36
   References .................................................. 37
3  Effects of Mechanotransduction on Stem Cell Behavior ........ 45
   Bahar Bilgen and Sedat Odabas
   3.1  Introduction ........................................... 45
   3.2  The Concept of Mechanotransduction ..................... 47
   3.3  The Mechanical Cues of Cell Differentiation and Tissue
        Formation on the Basis of Mechanotransduction .......... 48
   3.4  Mechanotransduction via External Forces ................ 49
        3.4.1  Mechanotransduction via Bioreactors ............. 50
        3.4.2  Mechanotransduction via Particle-based Systems .. 53
        3.4.3  Mechanotransduction via Other External Forces ... 55
   3.5  Mechanotransduction via Bioinspired Materials .......... 56
   3.6  Future Remarks and Conclusion .......................... 56
   Declaration of Interest ..................................... 57
   References .................................................. 57
4  Modulation of Stem Cells Behavior Through Bioactive
   Surfaces .................................................... 67
   Eduardo D. Gomes, Rita C. Assunção-Silva, Nuno Sousa,
   Nuno A. Silva and António J. Salgado
   4.1  Lithography ............................................ 68
   4.2  Micro and Nanopatterning ............................... 72
   4.3  Microfluidics .......................................... 73
   4.4  Electrospinning ........................................ 73
   4.5  Bottom-up/Top-down Approaches .......................... 76
   4.6  Substrates Chemical Modifications ...................... 77
        4.6.1  Biomolecules Coatings ........................... 78
        4.6.2  Peptide Grafting ................................ 79
   4.7  Conclusion ............................................. 80
   Acknowledgements ............................................ 81
   References .................................................. 81
5  Influence of Controlled Micro- and Nanoengineered
   Environments on Stem Cell Fate ..............................
   Anna Lagunas, David Caballero and Josep Samitier
   5.1  Introduction to Engineered Environments for the
        Control of Stem Cell Differentiation ................... 88
        5.1.1  Stem Cells Niche In Vivo: A Highly Dynamic
               and Complex Environment ......................... 88
        5.1.2  Mimicking the Stem Cells Niche In Vitro:
               Engineered Biomaterials ......................... 90
   5.2  Mechanoregulation of Stem Cell Fate .................... 91
        5.2.1  From In Vivo to In Vitro: Influence of the
               Mechanical Environment on Stem Cell Fate ........ 91
        5.2.2  Regulation of Stem Cell Fate by Surface
               Roughness ....................................... 92
        5.2.3  Control of Stem Cell Differentiation by
               Micro- and Nanotopographic Surfaces ............. 94
        5.2.4  Physical Gradients for Regulating Stem Cell
               Fate ............................................ 98
   5.3  Controlled Surface Immobilization of Biochemical
        Stimuli for Stem Cell Differentiation ................. 102
        5.3.1  Micro- and Nanopatterned Surfaces: Effect of
               Geometrical Constraint and Ligand Presentation
               at the Nanoscale ............................... 102
        5.3.2  Biochemical Gradients for Stem Cell
               Differentiation ................................ 109
   5.4  Three-dimensional Micro- and Nanoengineered
        Environments for Stem Cell Differentiation ............ 114
        5.4.1  Three-dimensional Mechanoregulation of Stem
               Cell Fate ...................................... 115
        5.4.2  Three-dimensional Biochemical Patterns for
               Stem Cell Differentiation ...................... 121
   5.5  Conclusions and Future Perspectives ................... 124
   References ................................................. 124
6  Recent Advances in Nanostructured Polymeric Surface:
   Challenges and Frontiers in Stem Cells ..................... 143
   Ilaria Armentano, Samantha Mattioli, Francesco Morena,
   Chiara Argentati, Sabata Martino, Luigi Torre and
   Josè Maria Kenny
   6.1  Introduction .......................................... 144
   6.2  Nanostructured Surface ................................ 146
   6.3  Stem Cell ............................................. 148
   6.4  Stem Cell/Surface Interaction ......................... 149
   6.5  Microscopic Techniques Used in Estimating Stem
        Cell/Surface .......................................... 150
        6.5.1  Fluorescence Microscopy ........................ 150
        6.5.2  Electron Microscopy ............................ 151
        6.5.3  Atomic Force Microscopy ........................ 155
          6.5.3.1  Instrument ................................. 156
          6.5.3.2  Cell Nanomechanical Motion ................. 158
          6.5.3.3  Mechanical Properties ...................... 158
   6.6  Conclusions and Future Perspectives ................... 160
   References ................................................. 160
7  Laser Surface Modification Techniques and Stem Cells
   Applications ............................................... 167
   Çaǧri Kaan Akkan
   7.1  Introduction .......................................... 168
   7.2  Fundamental Laser Optics for Surface Structuring ...... 168
        7.2.1  Definitive Facts for Laser Surface
               Structuring .................................... 169
          7.2.1.1  Absorptivity and Reflectivity of the
                   Laser Beam by the Material Surface ......... 169
          7.2.1.2  Effect of the Incoming Laser Light
                   Polarization ............................... 170
          7.2.1.3  Operation Mode of the Laser ................ 171
          7.2.1.4  Beam Quality Factor ........................ 172
          7.2.1.5  Laser Pulse Energy/Power ................... 173
        7.2.2  Ablation by Laser Pulses ....................... 174
          7.2.2.1  Focusing the Laser Beam .................... 174
          7.2.2.2  Ablation Regime ............................ 175
   7.3  Methods for Laser Surface Structuring ................. 176
        7.3.1  Physical Surface Modifications by Lasers ....... 176
          7.3.1.1  Direct Structuring ......................... 177
          7.3.1.2  Beam Shaping Optics ........................ 179
          7.3.1.3  Direct Laser Interference Patterning ....... 182
        7.3.2  Chemical Surface Modification by Lasers ........ 183
          7.3.2.1  Pulsed Laser Deposition .................... 183
          7.3.2.2  Laser Surface Alloying ..................... 186
          7.3.2.3  Laser Surface Oxidation and Nitriding ...... 188
   7.4  Stem Cells and Laser-modified Surfaces ................ 189
   7.5  Conclusions ........................................... 193
   References ................................................. 194
8  Plasma Polymer Deposition: A Versatile Tool for Stem Cell
   Research ................................................... 199
   M.N. Macgregor-Ramiasa and K. Vasilev
   8.1  Introduction .......................................... 199
   8.2  The Principle and Physics of Plasma Methods for
        Surface Modification .................................. 201
        8.2.1  Plasma Sputtering, Etching an Implantation ..... 202
        8.2.2  Plasma Polymer Deposition ...................... 203
   8.3  Surface Properties Influencing Stem Cell Fate ......... 204
        8.3.1  Plasma Methods for Tailored Surface Chemistry .. 205
          8.3.1.1  Oxygen-rich Surfaces ....................... 206
          8.3.1.2  Nitrogen-rich Surfaces ..................... 210
          8.3.1.3  Systematic Studies and Copolymers .......... 212
        8.3.2  Plasma for Surface Topography .................. 213
        8.3.3  Plasma for Surface Stiff^ness .................. 216
        8.3.4  Plasma for Gradient Substrata .................. 217
        8.3.5  Plasma and 3D Scaffolds ........................ 220
   8.4  New Trends and Outlook ................................ 221
   8.5  Conclusions ........................................... 221
   References ................................................. 222
9  Three-dimensional Printing Approaches for the Treatment
   of Critical-sized Bone Defects ............................. 233
   Sara Salehi, Bilal A. Naved and Warren L. Grayson
   9.1  Background ............................................ 234
        9.1.1  Treatment Approaches for Critical-sized Bone
               Defects ........................................ 234
        9.1.2  History of the Application of 3D Printing to
               Medicine and Biology ........................... 235
   9.2  Overview of 3D Printing Technologies .................. 236
        9.2.1  Laser-based Technologies ....................... 237
          9.2.1.1  Stereolithography .......................... 237
          9.2.1.2  Selective Laser Sintering .................. 238
          9.2.1.3  Selective Laser Melting .................... 238
          9.2.1.4  Electron Beam Melting ...................... 239
          9.2.1.5  Two-photon Polymerization .................. 239
        9.2.2  Extrusion-based Technologies ................... 240
          9.2.2.1  Fused Deposition Modeling .................. 240
          9.2.2.2  Material Jetting ........................... 240
        9.2.3   Ink-based Technologies ........................ 241
          9.2.3.1  Inkjet 3D Printing ......................... 241
          9.2.3.2  Aerosol Jet Printing ....................... 241
   9.3  Surgical Guides and Models for Bone Reconstruction .... 242
        9.3.1  Laser-based Surgical Guides .................... 242
        9.3.2  Extrusion-based Surgical Guides ................ 242
        9.3.3  Ink-based Surgical Guides ...................... 244
   9.4  Three-dimensionally Printed Implants for Bone
        Substitution .......................................... 244
        9.4.1  Laser-based Technologies for Metallic Bone
               Implants ....................................... 246
        9.4.2  Extrusion-based Technologies for Bone
               Implants ....................................... 247
        9.4.3  Ink-based Technologies for Bone Implants ....... 248
   9.5  Scaffolds for Bone Regeneration ....................... 248
        9.5.1  Laser-based Printing for Regenerative
               Scaffolds ...................................... 249
        9.5.2  Extrusion-based Printing for Regenerative
               Scaffolds ...................................... 249
        9.5.3  Ink-based Printing for Regenerative Scaffolds .. 252
        9.5.4  Pre- and Post-processing Techniques ............ 253
          9.5.4.1  Pre-processing ............................. 253
          9.5.4.2  Post-processing: Sintering ................. 259
          9.5.4.3  Post-processing: Functionalization ......... 259
   9.6  Bioprinting ........................................... 260
   9.7  Conclusion ............................................ 264
   List of Abbreviation ....................................... 265
   References ................................................. 266
10 Application of Bioreactor Concept and Modeling Techniques
   to Bone Regeneration and Augmentation Treatments ........... 279
   Oscar A. Deccó and Jésica I. Zuchuat
   10.1  Bone Tissue Regeneration ............................. 280
        10.1.1 Proinflammatory Cytokines ...................... 281
        10.1.2 Transforming Growth Factor Beta ................ 281
        10.1.3 Angiogenesis in Regeneration ................... 282
   10.2 Actual Therapeutic Strategies and Concepts to
        Obtain an Optimal Bone Quality and Quantity ........... 283
        10.2.1 Guided Bone Regeneration Based on Cells ........ 284
           10.2.1.1 Embryonic Stem Cells ...................... 284
           10.2.1.2 Adult Stem Cells .......................... 284
           10.2.1.3 Mesenchymal Stem Cells .................... 285
        10.2.2 Guided Bone Regeneration Based on Platelet-
               Rich Plasma (PRP) and Growth Factors ........... 286
           10.2.2.1   Bone Morphogenetic Proteins ............. 289
        10.2.3 Guided Bone Regeneration Based on Barrier
               Membranes ...................................... 290
        10.2.4 Guided Bone Regeneration Based on Scaffolds .... 292
   10.3 Bioreactors Employed for Tissue Engineering in Guided
        Bone Regeneration ..................................... 293
        10.3.1 Spinner Flask Bioreactors ...................... 294
        10.3.2 Rotating Wall Bioreactors ...................... 295
        10.3.3 Perfusion Bioreactors .......................... 295
   10.4 Bioreactor Concept in Guided Bone Regeneration and
        Tissue Engineering: In Vivo Application ............... 296
        10.4.1 Sand Blasting .................................. 298
        10.4.2 Chemical Treatment ............................. 299
        10.4.3 Heat Treatment ................................. 300
   10.5 New Multidisciplinary Approaches Intended to Improve
        and Accelerate the Treatment of Injured and/or
        Diseased Bone ......................................... 305
        10.5.1 Application of Bioreactor in Dentistry:
               Therapies for the Treatment of Maxillary Bone
               Defects ........................................ 306
        10.5.2 Application of Bioreactor in Cases
               of Osteoporosis ................................ 309
   10.6 Computational Modeling: An Effective Tool to Predict
        Bone Ingrowth 312 References .......................... 313
11 Stem Cell-based Medicinal Products: Regulatory
   Perspectives ............................................... 323
   Deniz Ozdil and Halil Murat Aydin
   11.1 Introduction .......................................... 323
   11.2 Defining Stem Cell-based Medicinal Products ........... 325
   11.3 Regional Regulatory Issues for Stem Cell Products ..... 328
   11.4 Regulatory Systems for Stem Cell-based Technologies ... 329
        11.4.1 The US Regulatory System ....................... 330
   11.5 Stem Cell Technologies: The European Regulatory
        System ................................................ 338
   References ................................................. 342
12 Substrates and Surfaces for Control of Pluripotent Stem
   Cell Fate and Function ..................................... 343
   Akshaya Srinivasan, Yi-Chin Toh, Xian Jun Loh and Wei
   Seong Toh
   12.1 Introduction .......................................... 344
   12.2 Pluripotent Stem Cells ................................ 344
   12.3 Substrates for Maintenance of Self-renewal and
        Pluripotency of PSCs .................................. 346
        12.3.1 Cellular Substrates ............................ 346
        12.3.2 Acellular Substrates ........................... 347
           12.3.2.1 Biological Matrices ....................... 347
           12.3.2.2 ECM Components ............................ 350
           12.3.2.3 Decellularized Matrices ................... 352
           12.3.2.4 Cell Adhesion Molecules ................... 353
           12.3.2.5 Synthetic Substrates ...................... 354
   12.4 Substrates for Promoting Differentiation of PSCs ...... 357
        12.4.1 Cellular Substrates ............................ 357
        12.4.2 Acellular Substrates ........................... 358
           12.4.2.1 Biological Matrices ....................... 358
           12.4.2.2 ECM Components ............................ 360
           12.4.2.3 Decellularized Matrices ................... 364
           12.4.2.4 Cell Adhesion Molecules ................... 365
           12.4.2.5 Synthetic Substrates ...................... 365
   12.5 Conclusions ........................................... 368
   Acknowledgments ............................................ 369
   References ................................................. 369
13 Silk as a Natural Biopolymer for Tissue Engineering ........ 381
   Ayşe Ak Can and Gamze Bölükbaşi Ateş
   13.1 Introduction .......................................... 382
        13.1.1 Mechanical Properties .......................... 383
        13.1.2 Biodegradation ................................. 384
        13.1.3 Biocompatibility ............................... 385
   13.2 SF as a Biomaterial ................................... 385
        13.2.1 Fibroin Hydrogels and Sponges .................. 386
        13.2.2 Fibroin Films and Membranes .................... 388
        13.2.3 Nonwoven and Woven Silk Scaffolds .............. 388
        13.2.4 Silk Fibroin as a Bioactive Molecule Delivery .. 388
   13.3 Biomedical Applications of Silk-based Biomaterials .... 389
        13.3.1 Bone Tissue Engineering ........................ 389
        13.3.2 Cartilage Tissue Engineering ................... 391
        13.3.3 Ligament and Tendon Tissue Engineering ......... 393
        13.3.4 Cardiovascular Tissue Engineering .............. 393
        13.3.5 Skin Tissue Engineering ........................ 395
        13.3.6 Other Applications of Silk Fibroin ............. 395
   13.4 Conclusion and Future Directions ...................... 395
   References ................................................. 396
14 Applications of Biopolymer-based, Surface-modified
   Devices in Transplant Medicine and Tissue Engineering ...... 401
   Ashim Malhotra, Gulnaz Javan and Shivani Soni
   14.1 Introduction to Cardiovascular Disease ................ 402
   14.2 Need Assessment for Biopolymer-based Devices in
        Cardiovascular Therapeutics ........................... 402
   14.3 Emergence of Surface Modification Applications in
        Cardiovascular Sciences: A Historical Perspective ..... 403
   14.4 Nitric Oxide Producing Biosurface Modification ........ 405
   14.5 Surface Modification by Extracellular Matrix Protein
        Adherence ............................................. 406
   14.6 The Role of Surface Modification in the Construction
        of Cardiac Prostheses ................................. 407
   14.7 Biopolymer-based Surface Modification of Materials
        Used in Bone Reconstruction ........................... 408
   14.8 The Use of Biopolymers in Nanotechnology .............. 411
        14.8.1 Protein Nanoparticles .......................... 412
           14.8.1.1 Albumin-based Nanoparticles and Surface
                    Modification .............................. 413
           14.8.1.2 Collagen-based Nanoparticles and Surface
                    Modification .............................. 414
           14.8.1.3 Gelatin-based Nanoparticle Systems ........ 415
        14.8.2 Polysaccharide-based Nanoparticle Systems ...... 415
           14.8.2.1 The Use of Alginate for Surface
                    Modifications ............................. 415
           14.8.2.2 The Use of Chitosan-based Nanoparticles
                    and Chitosan-based Surface Modification ... 416
           14.8.2.3 The Use of Chitin-based Nanoparticles
                    and Chitin-based Surface Modification ..... 418
           14.8.2.4 The Use of Cellulose-based Nanoparticles
                    and Cellulose-based Surface Modification .. 419
15 References 420 15 Stem Cell Behavior on Microenvironment
   Mimicked Surfaces .......................................... 425
   M. Özgen Öztürk Öncel and Bora Garipcan
   15.1 Introduction .......................................... 426
   15.2 Stem Cells ............................................ 427
        15.2.1 Definition and Types ........................... 427
           15.2.1.1 Embryonic Stem Cells ...................... 428
           15.2.1.2 Adult Stem Cells .......................... 428
           15.2.1.3 Reprogramming and Induced Pluripotent
                    Stem Cells ................................ 429
        15.2.2 Stem Cell Niche ................................ 429
   15.3 Stem Cells: Microenvironment Interactions ............. 430
        15.3.1 Extracellular Matrix ........................... 431
        15.3.2 Signaling Factors .............................. 431
        15.3.3 Physicochemical Composition .................... 432
        15.3.4 Mechanical Properties .......................... 432
        15.3.5 Cell-Cell Interactions ......................... 433
   15.4 Biomaterials as Stem Cell Microenvironments ........... 433
        15.4.1 Surface Chemistry .............................. 433
        15.4.2 Surface Hydrophilicity and Hydrophobicity ...... 436
        15.4.3 Substrate Stiffness ............................ 437
        15.4.4 Surface Topography ............................. 437
   15.5 Biomimicked and Bioinspired Approaches ................ 438
        15.5.1 Bone Tissue Regeneration ....................... 441
        15.5.2 Cartilage Tissue Regeneration .................. 442
        15.5.3 Cardiac Tissue Regeneration .................... 443
   15.6 Conclusion ............................................ 444
   References ................................................. 444
Index ......................................................... 453


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:30:30 2019. Размер: 26,619 bytes.
Посещение N 871 c 22.01.2019