Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаContinentino M. Quantum scaling in many-body systems: an approach to quantum phase transitions. - 2nd ed. - Cambridge: Cambridge University Pres, 2017. - xii, 235 p.: ill. - Bibliogr.: p.227-233. - Ind. - p.234-235. - ISBN 978-1-107-15025-6
Шифр: (И/В31-С76) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi
1  Scaling Theory of Quantum Critical Phenomena ................. 1
   1.1  Quantum Phase Transitions ............................... 1
   1.2  Renormalisation Group and Scaling Relations ............. 4
   1.3  The Critical Exponents .................................. 5
   1.4  Scaling Properties Close to a Zero-Temperature Fixed 
        Point ................................................... 6
   1.5  Extension to Finite Temperatures ....................... 12
   1.6  Temperature-Dependent Behaviour near a Quantum
        Critical Point ......................................... 18
   1.7  Generalised Scaling .................................... 18
   1.8  Conclusions ............................................ 23
2  Landau and Gaussian Theories ................................ 25
   2.1  Introduction ........................................... 25
   2.2  Landau Theory of Phase Transitions ..................... 25
   2.3  Gaussian Approximation (T > Tc) ........................ 28
   2.4  Gaussian Approximation (T < Tc) ........................ 32
   2.5  Goldstone Mode ......................................... 34
   2.6  Ising Model in a Transverse Field - Mean-Field
        Approximation .......................................... 36
3  Real Space Renormalisation Group Approach ................... 39
   3.1  Introduction ........................................... 39
   3.2  The Ising Model in a Transverse Field .................. 40
   3.3  Recursion Relations and Fixed Points ................... 42
   3.4  Conclusions ............................................ 44
4  Renormalisation Group: the ϵ-Expansion ...................... 46
   4.1  The Landau-Wilson Functional ........................... 46
   4.2  The Renormalisation Group in Momentum Space ............ 47
   4.3  Fixed Points ........................................... 53
   4.4  Renormalisation Group Flows and Critical Exponents ..... 54
   4.5  Conclusions ............................................ 56
5  Quantum Phase Transitions ................................... 57
   5.1  Effective Action for a Nearly Ferromagnetic Metal ...... 57
   5.2  The Quantum Paramagnetic-to-Ferromagnetic Transition ... 60
   5.3  Extension to Finite Temperatures ....................... 67
   5.4  Effective Action Close to a Spin-Density Wave
        Instability ............................................ 70
   5.5  Gaussian Effective Actions and Magnetic 
        Instabilities in Metallic Systems ...................... 71
   5.6  Field-Dependent Free Energy ............................ 73
   5.7  Gaussian versus Mean Field at T ≠ 0 .................... 74
   5.8  Critique of Hertz Approach ............................. 75
6  Heavy Fermions .............................................. 77
   6.1  Introduction ........................................... 77
   6.2  Scaling Analysis ....................................... 82
   6.3  Conclusions ............................................ 86
7  A Microscopic Model for Heavy Fermions ...................... 87
   7.1  The Model .............................................. 87
   7.2  Local Quantum Criticality .............................. 89
   7.3  Critical Regime ........................................ 95
   7.4  Generalised Scaling and the Non-Fermi Liquid Regime .... 96
   7.5  Local Regime near the QCP .............................. 98
   7.6  Quantum Lifshitz Point ................................. 99
   7.7  Conclusions ........................................... 100
8  Metal and Superfluid-Insulator Transitions ................. 102
   8.1  Conductivity and Charge Stiffness ..................... 102
   8.2  Scaling Properties Close to a Metal-Insulator 
        Transition ............................................ 107
   8.3  Different Types of Metal-Insulator Transitions ........ 108
   8.4  Disorder-Driven Superfluid-Insulator Transition ....... 110
9  Density-Driven Metal-Insulator Transitions ................. 115
   9.1  The Simplest Density-Driven Transition ................ 115
   9.2  Renormalisation Group Approach ........................ 117
   9.3  Metal-Insulator Transition in Divalent Metals ......... 120
   9.4  The Excitonic Transition .............................. 124
   9.5  The Effect of Electron-Electron Interactions .......... 124
   9.6  The Density-Driven MI Transition in the d = I 
        Hubbard Model ......................................... 125
   9.7  Effects of Disorder ................................... 127
10 Mott Transitions ........................................... 129
   10.1 Introduction .......................................... 129
   10.2 Gutzwiller Approach ................................... 131
   10.3 Density-Driven Transition ............................. 141
   10.4 Scaling Analysis ...................................... 142
   10.5 Conclusions ........................................... 144
11 The Non-Linear Sigma Model ................................. 146
   11.1 Introduction .......................................... 146
   11.2 Transverse Fluctuations ............................... 147
   11.3 The Quantum Non-Linear Sigma Model .................... 151
   11.4 Some Notable β-Functions .............................. 153
12 Superconductor Quantum Critical Points ..................... 158
   12.1 Introduction .......................................... 158
   12.2 Non-Uniform Superconductor ............................ 162
   12.3 Criterion for Superconductivity ....................... 164
   12.4 Normal-to-FFLO Quantum Phase Transition in Three
        Dimensions ............................................ 165
   12.5 The Universality Class of the T=0 d=3 FFLO Quantum
        Phase Transition ...................................... 167
   12.6 The Two-Dimensional Problem ........................... 168
   12.7 Disorder-Induced SQCP ................................. 175
13 Topological Quantum Phase Transitions ...................... 177
   13.1 The Landau Paradigm ................................... 177
   13.2 Topological Quantum Phase Transitions ................. 177
   13.3 The Kitaev Model ...................................... 178
   13.4 Renormalisation Group Approach to the Kitaev Model .... 183
   13.5 The Simplest Topological Insulator: the sp-Chain ...... 187
   13.6 Weyl Fermions in Superconductors ...................... 192
14 Fluctuation-Induced Quantum Phase Transitions .............. 196
   14.1 Introduction .......................................... 196
   14.2 Goldstone Modes and Anderson-Higgs Mechanism .......... 198
   14.3 The Effective Potential ............................... 199
   14.4 At the Quantum Critical Point ......................... 201
   14.5 The Nature of the Transition .......................... 203
   14.6 The Neutral Superfluid ................................ 206
   14.7 The Charged Superfluid ................................ 207
   14.8 Quantum First-Order Transitions in Systems with
        Competing Order Parameters ............................ 209
   14.9 Superconducting Transition ............................ 212
   14.10 Antiferromagnetic Transition ......................... 213
   14.11 One-Loop Effective Potentials and Renormalisation 
         Group ................................................ 214
   14.12 Conclusions .......................................... 215
15 Scaling Theory of First-Order Quantum Phase Transitions .... 217
   15.1 Scaling Theory of First-Order Quantum Phase
        Transitions ........................................... 217
   15.2 The Charged Superfluid and the Coleman-Weinberg
        Potential: Scaling Approach ........................... 218
   15.3 Conclusions ........................................... 223
Appendix ...................................................... 224
   A.1  Green's Functions ..................................... 224
References .................................................... 227
Index ......................................................... 234


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:30:30 2019. Размер: 10,668 bytes.
Посещение N 888 c 22.01.2019