NanoBioMedical Centre Adam Mickiewicz University Poznan, Poland

Stefan Jurga

Novosibirsk, November 27, 2012 Novosibirsk Akademgorodok

Location

$Pozna\acute{n}$, the city of two fighting goats")

NanoBioMedical Center

NanoBioMedical Centre Adam Mickiewicz University, Poznań

A multidisciplinary unit focused on the high quality research and education on doctoral and master level in

nanoscience and nanotechnology

with a focus on possible applications to biology and nanomedicine

NanoBioMedical Center

The project of about 36 M Euro

- Building 2600 m^2 5.5 M Euro
- Equipment 25.0 M Euro
- 30 PhD students in nanoscience - 2.5 M Euro
- 60 Master students 1.0 M Euro
- •15 Research Staff Support 2.0 M Euro

FP7 - ESMI (Juelich), 18 European partners

FP7 - IRSES (NANOMAG) - Demokritos

EDUCATION BASED RESEACH

PhD studies (30 students)

Interdisciplinary doctoral studies in the area of nanoscience and nanotechnology, including 4 years compulsory 1 year abroad in partner institution

- Master studies (60 students)
 a) Biophysics (spec: nano-bio-medicine): 2 years
 b) Bio-Nano-Materials: 2 years
- E-learning in the nanoscience ICT (laboratory trainings, courses, demonstrations)
- Individual PhD and MSc projects from faculties of AMU and partner institutions

Research areas of NanoBioMedical Center

- 1. Macromolecular nanotransporters, nanocomposites
- 2. NPs for nano-diagnosis and targeted drug delivery
- 3. Metalic nanoparticles magnetic and electronic properties
- 4. Carbon nanostructures physical propertis
- 5. Free radicals for nanodetection
- 6. Multiferroic nanostructures
- 7. Nanopores, confinement & phase transitions
- 8. Polymeric self-assembly systems
- 9. New nanoparticles for MRI contrast agents
- 10. Nanomaterials & nanosystems for tissue engineering (hydrogels)

• Microscopy HR TEM 200kV cryo-TEM, 120 kV FIB, STM UHV, Cryo-SEM AFM/Raman, AFM/SNOM AFM for biology and material studies

•Manufacture of Nanostructures mikrotoms, cryo-plunge, epitaxy, ovens for NT growth, evaporators

(1)

Optical Spectroscopy

Scanning Confocal Microscopies, with FCS -Fluorescence Correlation Spectroscopy (Olympus & Zeiss) Fast Multibeam Scan. Confocal Microscopy with STED, Leica

(2)

- NMR Spectroscopy 800 MHz narrow bore for biological 600 MHz wide bore for diffusion and microimaging 400 MHz wide bore
- Magnetometry SQUID, 7 Ts (Quantum Design)
- Medical Imaging Animal MRI 9.4 T ESR imaging, L band Optical Tomography

Biological

Surface Plasmon Resonance Biosensor, In Cell Analyzer, Fluorescence Microscopy for Immunolocalization Fluorescence Activated Cell Sorter, Polymerase Chain Reaction in real time

Chemical

UV-VIS-NIR XRD – powder, SAXS and WAXS for thin films Dielectric Spectroscopy – high pressure Viscosimeters

Cleanrooms (1000, 1000, 100)

Atomic Layer Deposition Reactive Ion Etching Chemical Vapour Deposition Photolithography Molecular Beam Epitaxy

Vision- and Neuroscience Fundus camera,TMS+EEG, neuronavigation)

Student's Optometric laboratory
(4)

Partners

- Freie Universität Berlin, Germany
- Research Center Jülich, Germany
- Max-Planck-Institute for Molecular Biology, Berlin
 - Carnegie Melon University, USA
 - New York State University, USA
 - University of Cambridge, UK
 - University of London, UK
 - University of Tsukuba, Japan
 - Korea Basic Science Institute, South Korea
 - University of Ljubljana, Sl
 - NRC Demokritos, Greece
 - FORTH, Heraklion, Greece
 - University of Florence, Italy
 - University of Trieste, Italy
 - University of Nancy, France
 - University of Lyon, France
 - Polish Academy of Sciences

Laboratorium Spektroskopii NMR i Obrazowania

Laboratorium Mikroskopii

Focused Ion Beam FIB

Laboratorium Mikroskopii

Mikroskop sił atomowych AFM

Analiza składu chemicznego i badania topografii w ciele stałym, cieczach i układach biologicznych

Badania topografii, własności magnetycznych i przewodności powierzchni

Spektrometr Ramana z odwróconym mikroskopem optycznym zintegrowany z mikroskopem sił atomowych AFM

Laboratorium Spektroskopii Optycznej

Badania dynamiki w małych objętościach i obrazowanie układów biologicznych ze zdolnością rozdzielczą 50 nm

Mikroskop konfokalny ze stymulowanym wygaszaniem emisji STED

Skaningowy mikroskop konfokalny

Analiza optyczna i interakcji fotonicznych nanomateriałów i materiałów biologicznych

Laboratorium Chemiczne

Spektrometr UV-VIS-NIR

Różnicowy Kalorymetr Skaningowy DSC

Badania fizycznych i chemicznych właściwości nanocząstek i nanostruktur

Laboratorium Biologiczne

"In Cell Analyzer"

Badania procesów nanobiologicznych oraz monitoring terapii farmaceutycznych na poziomie komórkowym. Analiza i obrazowanie procesów zachodzących w komórkach

Laboratorium Medyczne

Badania obejmujące zagadnienia inżynierii tkankowej, leczenia chorób i ich detekcji

Laboratorium Nanostruktur i Cleanroom

Osadzanie warstw atomowych ALD

Projektowanie, wytwarzanie i charakterystyka układów w mikro i nanoskali

Osadzanie warstw z fazy gazowej CVD

Fotolitografia

Reaktywne trawienie jonowe RIE

Laboratorium Neuronauki i Widzenia

Badania w dziedzinie neurologii i psychofizjologii, załamania i widzenia obuocznego, etiologii chorób oczu i kontaktologii, właściwości optycznych materiałów do diagnozowania chorób oczu i tworzenia protez ocznych

Przezczaszkowy Stymulator Magnetyczny TMS

Funduskamera

Koherentna spektralna tomografia optyczna SOCT

Molekularny Tomograf Fluorescencyjny FMT

FMT to nieinwazyjna metoda obrazowania *"in vivo"* szeroko stosowana w onkologii, chorobach płuc, układu krążenia, stanach zapalnych oraz chorobach Układu kostnego

Molekularny Tomograf Fluorescencyjny FMT 1500

FMT pozwala:

- Monitorować i określać ilościowo elementy biologiczne oraz zachodzące w organizmie procesy (również w otoczeniu fizjologicznie związanym)
- głębiej zrozumieć mechanizm powstawania chorób, ich postęp oraz odpowiedzi organizmu na stosowane metody terapeutyczne
- interpretować dane kliniczne w oparciu o dane ze studyjnego modelu choroby

Dzięki wykorzystaniu odczynników fluorescencyjnych można ponadto:

- mierzyć, monitorować oraz analizować ilościowo aktywność biologiczną żywego organizmu
- zredukować liczbę zwierząt niezbędnych do wykonania założonych prac badawczych
- uzyskać nowe, unikalne informacje dotyczące biologii choroby oraz mechanizmów działania leków

Mikroskop Fluorescencyjny z oprogramowaniem do FISH i kariotypowania i immunolokalizacji

Służy do badania materiału biologicznego - komórek i tkanek o zjawisko fluorescencii W oparciu fosforescencji. Stosuje się znakowanie fluorescencyjne sond rozpoznających fragmenty DNA lub białek. W badaniach molekularnych stosuje się do znakowania sond wykorzystywanych we fluorescencyinei hybrydyzacji in situ (FISH) do mapowania transgenu w komórkach, lokalizacji genu, transkryptu lub białka w komórce, określania prawidłowści kariotypu komórek.

Mikroskop fluorescencyjny Axio Imager M2

Biosensor – Oparty na zjawisku optycznym powierzchniowego rezonansu plazmonowego SPR

Biacore X100

Do badania oddziaływań między cząsteczkami z wykorzystaniem sensora opartego na zjawisku optycznym powierzchniowego rezonansu plazmonowego (ang. surface plasmon resonanse, SPR). Biosensory umożliwiają ilościowe pomiary oddziaływań między jedną lub większą liczbą cząstek w zależności od związanej cząstki docelowej na powierzchni sensora. Cząstki, z którymi będzie się wiązać mogą być pobierane z nieoczyszczonej mieszaniny, która przepływa przez sensor. Pomiarom mogą podlegać różne oddziaływania między białkami, kwasami nukleinowymi, lipidami, cukrowcami a nawet całymi komórkami. Selected research projects

- •Star polymers crystalline/amorphic
- Nanocomposites clay/polymers
- Gold nanoparticles/Ionic Liquids

Questions

1. Phase structure: crystalline/ amorphous; stability/solubility (XRD, AFM, NMR)

2. Molecular mobility: key point - for stability (NMR & BDS)

- 3. Crystallization kinetics: nucleation and growth in glassy state (POM, FTIR, DSC)
- 4. Amphiphilicty: hydrophobic/hydrophilic nature of the nanocarrier (~40% of drugs hydrophobic)

Polymeric nanostructures

Mahmoud Elsabahy, Karen L. Wooley, JOURNAL OF POLYMER SCIENCE PART A POLYMER CHEMISTRY 2012, 50, 1869–1880 Miktoarm star polymers -model nanostructures with a potential for drug delivery (two various polymer chains emanate from the core)

(PolyA)_n-(polyB)_p-polyX $M_{\rm w}/M_{\rm p} < 1.2$

Haifeng Gao, and Krzysztof Matyjaszewski; *Macromolecules* 2008, *41*, 4250-4257 ATRP

Model system

poly(ethylene oxide) arms - (E)

poly(butyl acrylate) arms - (B)

(Makrocka-Rydzyk, SJ, POLYMER, 2011, 52, 5513)

STRUCTURE, Differential Scanning Calorimetry

STRUCTURE: Crystallization by POM images

80% poly(ethylene oxide)

STRUCTURE: B2E8 Isothermal crystallization kinetics at 25°C WAXS

STRUCTURE: AFM (tapping mode)

(B2E8) after crystallization from the melt

DMT modulus

ADHESION

The bright regions in DMT modulus and dark regions in adhesion maps correspond to the lamellas (part of spherullite).

STRUCTURE: SAXS- B2E8

scattered intensity as a function of the scattering vector

STRUCTURE: SAXS -B5E5

Temperature dependence of SAXS data for miktoarm star B2E8 copolymer

Formation of crystalline domains due to the self-assembling of PEO arms in the PBA/PEO miktoarm star copolymer

PEO crystalline domain

Dynamics

Frequency of molecular motions 10^{1} 10^{4} 10^{3} 10^{5} 10^{6} ν [Hz] 10^{2} 10^{7} 10^{8} 10^{9} NMR Relaxation Dispersion T_1 NMR Diffusion **RelaxationT**₁₀ Relaxation T₁ **T**2 τ[s] 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10-7 10^{-8} 10^{-9}

Molecular motion correlation (relaxation) time

Broadband Dielectric Spectroscopy (BDS)

Rheology

R. Kimmich, E. Anoardo, Field-cycling NMR Relaxometry, Progress in Nuclear Magnetic Resonance Spectroscopy 44 (2004) 257

NMR RELAXATION

Fluctuations of dipolar magnetic spin-spin interactions give rise to T1 relaxation

 $1/T1 = A [J1(\omega) + J2(\omega)]$

 $J(\omega) = FT{G(\tau)}$

$$\mathbf{J}(\boldsymbol{\omega}) = \tau_c / (1 + \omega^2 \tau_c^2)$$

T1 at one Larmor frequency for different temperatures] T1 as a function of Larmor frequencies - T1 dispersion

DYNAMICS: T1 spin-lattice relaxation times (200 MHz

DYNAMICS: by T1 Dispersion for B2E8 (extra segmental α process)

R. Kimmich at al., Progress in Nuclear Magnetic Resonance Spectroscopy 44 (2004) 257-320

DYNAMICS: NMR self-diffusion at 25 °C for B8E2

Fourier Transform Pulsed Field Gradient Stimulated Echo NMR, δ =5 ms, Δ =300 ms

DYNAMICS: NMR self-diffusion for B8E2 polymer at 50 °C

PFGSE NMR, δ =4 ms, Δ =200 ms

Two distinctive spectral components (polidyspersity)

DYNAMICS: Dielectric Relaxation

$$C = \varepsilon' \varepsilon_0 \frac{\pi D^2}{4d}$$

$$U(t) = U_0 \cos(\omega t) = \operatorname{Re}(U^* \exp(i\omega t))$$

$$I(t) = I_0 \cos(\omega t + \varphi) = \operatorname{Re}(I^* \exp(i\omega t))$$

$$\varepsilon^{*}(\omega) = \varepsilon' - i\varepsilon'' = \frac{-i}{\omega Z^{*}(\omega)} \frac{1}{C_{0}}$$

$$\varepsilon^{*}(\omega) = \begin{bmatrix} \varepsilon_{s} - \varepsilon_{\infty} \\ 1 + \omega^{2} \tau_{D}^{2} \end{bmatrix} - i \begin{bmatrix} (\varepsilon_{s} - \varepsilon_{\infty})\omega\tau_{D} \\ 1 + \omega^{2} \tau_{D}^{2} \end{bmatrix}$$

$$\varepsilon^{*}(\omega) \qquad \varepsilon^{*}(\omega)$$

DYNAMICS: by BDS

DYNAMICS: BDS

Relaxation/correlation times determined for miktoarm star copolymers

 $-\log \tau$

Acknowledgment

Coworkers M. Makrocka-Rydzyk M. Kempka M. Dobies M. Grzeszkowiak A. Wypych J. Jenczyk G. Nowaczyk M. Jancelewicz K. Wegner M. Wiesner

Collaboration Prof. Krys Matyjaszewski

NanoBioMedical Centre Poznań