LeSar R. Introduction to computational materials science: fundamentals to applications (Cambridge; New York, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
ОбложкаLeSar R. Introduction to computational materials science: fundamentals to applications / R.LeSar, I.S.University. - Cambridge; New York: Cambridge University Press, 2013. - xiii, 414 p.: ill. - Ref.: p.392-408. - Ind.: p.409-414. - ISBN 978-0-521-84587-8
 

Оглавление / Contents
 
   Preface ..................................................... xi

1  Introduction to materials modeling and simulation ............ 1
   1.1  Modeling and simulation ................................. 1
   1.2  What is meant by computational materials science and
        engineering? ............................................ 2
   1.3  Scales in materials structure and behavior .............. 3
   1.4  How to develop models ................................... 5
   1.5  Summary ................................................. 7

PART ONE. SOME BASICS
2  The random-walk model ....................................... 11
   2.1  Random-walk model of diffusion ......................... 11
   2.2  Connection to the diffusion coefficient ................ 13
   2.3  Bulk diffusion ......................................... 18
   2.4  A random-walk simulation ............................... 19
   2.5  Random-walk models for materials ....................... 25
   2.6  Summary ................................................ 26
3  Simulation of finite systems ................................ 27
   3.1  Sums of interacting pairs of objects ................... 27
   3.2  Perfect crystals ....................................... 29
   3.3  Cutoffs ................................................ 31
   3.4  Periodic boundary conditions ........................... 32
   3.5  Implementation ......................................... 34
   3.6  Long-ranged potentials ................................. 35
   3.7  Summary ................................................ 36
   3.8  Appendix ............................................... 36

PART TWO. ATOMS AND MOLECULES
4  Electronic structure methods ................................ 45
   4.1  Quantum mechanics of multielectron systems ............. 46
   4.2  Early density functional theories ...................... 47
   4.3  The Hohenberg-Kohn theorem ............................. 51
   4.4  Kohn-Sham method ....................................... 51
   4.5  The exchange-correlation functional .................... 54
   4.6  Wave functions ......................................... 55
   4.7  Pseudopotentials ....................................... 57
   4.8  Use of density functional theory ....................... 59
   4.9  Summary ................................................ 61
5  Interatomic potentials ...................................... 62
   5.1  The cohesive energy .................................... 62
   5.2  Interatomic potentials ................................. 63
   5.3  Pair potentials ........................................ 67
   5.4  Ionic materials ........................................ 76
   5.5  Metals ................................................. 78
   5.6  Covalent solids ........................................ 84
   5.7  Systems with mixed bonding ............................. 88
   5.8  What we can simulate ................................... 89
   5.9  Determining parameters in potentials ................... 91
   5.10 Summary ................................................ 91
   5.11 Appendix ............................................... 92
6  Molecular dynamics .......................................... 96
   6.1  Basics of molecular dynamics for atomic systems ........ 96
   6.2  An example calculation ................................ 107
   6.3  Velocity rescaling .................................... 116
   6.4  Molecular dynamics in other ensembles ................. 117
   6.5  Accelerated dynamics .................................. 120
   6.6  Limitations of molecular dynamics ..................... 122
   6.7  Molecular dynamics in materials research .............. 123
   6.8  Summary ............................................... 125
   6.9  Appendix .............................................. 125
7  The  Monte Carlo method .................................... 131
   7.1  Introduction .......................................... 131
   7.2  Ensemble averages ..................................... 132
   7.3  The Metropolis algorithm .............................. 134
   7.4  The Ising model ....................................... 139
   7.5  Monte Carlo for atomic systems ........................ 145
   7.6  Other ensembles ....................................... 150
   7.7  Time in a Monte Carlo simulation ...................... 154
   7.8  Assessment of the Monte Carlo method .................. 155
   7.9  Uses of the Monte Carlo method in materials research .. 155
   7.10 Summary ............................................... 156
   7.11 Appendix .............................................. 156
8  Molecular and macromolecular systems ....................... 158
   8.1  Introduction .......................................... 158
   8.2  Random-walk models of polymers ........................ 161
   8.3  Atomistic simulations of macromolecules ............... 163
   8.4  Coarse-grained methods ................................ 172
   8.5  Lattice models for polymers and biomolecules .......... 175
   8.6  Simulations of molecular and macromolecular
        materials ............................................. 176
   8.7  Summary ............................................... 177
   8.8  Appendix .............................................. 178

PART THREE. MESOSCOPIC METHODS
9  Kinetic Monte Carlo ........................................ 183
   9.1  The kinetic Monte Carlo method ........................ 183
   9.2  Time in the kinetic Monte Carlo method ................ 187
   9.3  Kinetic Monte Carlo calculations ...................... 189
   9.4  Applications .......................................... 194
   9.5  Summary ............................................... 195
10 Monte Carlo methods at the mesoscale ....................... 196
   10.1 Modeling Grain Growth ................................. 196
   10.2 The Monte Carlo Potts model ........................... 198
   10.3 The N-fold way ........................................ 202
   10.4 Example applications of the Potts model ............... 205
   10.5 Applications in materials science and engineering ..... 208
   10.6 Summary ............................................... 210
11 Cellular automata .......................................... 211
   11.1 Basics of cellular automata ........................... 211
   11.2 Examples of cellular automata in two dimensions ....... 215
   11.3 Lattice-gas methods ................................... 218
   11.4 Examples of cellular automata in materials research ... 219
   11.5 Relation to Monte Carlo ............................... 227
   11.6 Summary ............................................... 227
12 Phase-field methods ........................................ 229
   12.1 Conserved and non-conserved order parameters .......... 229
   12.2 Governing equations ................................... 230
   12.3 A one-dimensional phase-field calculation ............. 233
   12.4 Free energy of an interface ........................... 237
   12.5 Local free-energy functions ........................... 238
   12.6 Two examples .......................................... 241
   12.7 Other applications in materials research .............. 244
   12.8 Summary ............................................... 244
   12.9 Appendix .............................................. 244
13 Mesoscale dynamics ......................................... 249
   13.1 Damped dynamics ....................................... 249
   13.2 Langevin dynamics ..................................... 251
   13.3 Simulation "entities" at the mesoscale ................ 252
   13.4 Dynamic models of grain growth ........................ 253
   13.5 Discrete dislocation dynamics simulations ............. 256
   13.6 Summary ............................................... 265

PART FOUR. SOME FINAL WORDS

14 Materials selection and design ............................. 269
   14.1 Integrated computational materials engineering ........ 269
   14.2 Concurrent materials design ........................... 271
   14.3 Methods ............................................... 273
   14.4 Materials informatics ................................. 275
   14.5 Summary ............................................... 278

PART FIVE. APPENDICES
A  Energy units, fundamental constants, and conversions ....... 281
   A.l  Fundamental constants ................................. 281
   A.2  Units and energy conversions .......................... 281
В  A brief introduction to materials .......................... 283
   B.l  Introduction .......................................... 283
   B.2  Crystallography ....................................... 284
   B.3  Defects ............................................... 291
   B.4  Point defects ......................................... 291
   B.5  Dislocations .......................................... 292
   B.6  Polycrystalline materials ............................. 302
   B.7  Diffusion ............................................. 306
С  Mathematical background .................................... 310
   C.l  Vectors and tensors ................................... 310
   C.2  Taylor series ......................................... 314
   C.3  Complex numbers ....................................... 315
   C.4  Probability ........................................... 317
   C.5  Common functions ...................................... 318
   C.6  Functionals ........................................... 321
D  A brief summary of classical mechanics ..................... 324
   D.l  Newton's equations .................................... 324
   D.2  The Hamiltonian ....................................... 326
   D.3  Example: the harmonic oscillator ...................... 327
   D.4  Central-force potentials .............................. 328
E  Electrostatics ............................................. 330
   E.l  The force ............................................. 330
   E.2  Electrostatic potentials and energies ................. 330
   E.3  Distribution of charges: the multipole expansion ...... 331
F  Elements of quantum mechanics .............................. 334
   F.l  History ............................................... 334
   F.2  Wave functions ........................................ 335
   F.3  The Schrödinger equation .............................. 336
   E.4  Observables ........................................... 336
   F.5  Some solved problems .................................. 337
   F.6  Atoms with more than one electron ..................... 342
   F.7  Eigenvalues and eigenvectors .......................... 346
   F.8  Multielectron systems ................................. 348
   F.9  Quantum mechanics of periodic systems ................. 349
   F.10 Summary ............................................... 349
G  Statistical thermodynamics and kinetics .................... 351
   G.l  Basic thermodynamic quantities ........................ 351
   G.2  Introduction to statistical thermodynamics ............ 352
   G.3  Macrostates versus microstates ........................ 352
   G.4  Phase space and time averages ......................... 353
   G.5  Ensembles ............................................. 355
   G.6  Fluctuations .......................................... 362
   G.7  Correlation functions ................................. 364
   G.8  Kinetic rate theory ................................... 368
   G.9  Summary ............................................... 374


Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:31:26 2019. Размер: 15,644 bytes.
Посещение N 1081 c 13.10.2015